zoukankan      html  css  js  c++  java
  • 549565

    $f命题2:$设$fleft( x ight) in Cleft( { - infty , + infty } ight)$,令[{f_n}left( x ight) = sumlimits_{k = 0}^{n - 1} {frac{1}{n}} fleft( {x + frac{k}{n}} ight)]

    证明:对任意$x in left[ {a,b} ight] subset left( { - infty , + infty } ight)$,有${f_n}left( x ight)$一致收敛于$int_0^1 {fleft( {x + t} ight)dt}$

    证明:由$fleft( x ight) in Cleft( { - infty , + infty } ight)$知,$fleft( x ight) in Cleft[ {a,b} ight]$,则

    由$f{Cantor定理}$知,$fleft( x ight)$在$left[ {a,b} ight]$上一致连续,即对任意$varepsilon > 0$,存在$delta > 0$,使得对任意的$x,y in left[ {a,b} ight]$满足$left| {x - y} ight|
    < delta $时,有[left| {fleft( x ight) - fleft( y ight)} ight| < varepsilon ]
    取$N = frac{1}{delta }$,则当$n > N$时,对任意$x in left[ {a,b} ight]$,$t in left[ {frac{k}{n},frac{{k + 1}}{n}} ight]$,有
    [left| {left( {x + frac{k}{n}} ight) - left( {x + t} ight)} ight| < delta ]

    从而有[left| {fleft( {x + frac{k}{n}} ight) - fleft( {x + t} ight)} ight| < varepsilon ]

    所以对任意$varepsilon > 0$,存在$N = frac{1}{delta } > 0$,使得当$n > N$时,对任意$x in left[ {a,b} ight]$,有
    [left| {{f_n}left( x ight) - int_0^1 {fleft( {x + t} ight)dt} } ight| = left| {sumlimits_{k = 0}^{n - 1} {int_{frac{k}{n}}^{frac{{k + 1}}{n}} {left[ {fleft( {x + frac{k}{n}} ight) - fleft( {x + t} ight)} ight]dt} } } ight| < varepsilon ]
    从而由函数列一致收敛的定义即证

    $f注1:$$int_0^1 {fleft( {x + t} ight)dt} { m{ = }}sumlimits_{k = 0}^{n - 1} {int_{frac{k}{n}}^{frac{{k + 1}}{n}} {fleft( {x + t} ight)dt} } $

  • 相关阅读:
    zoj 3599 Game 博弈论
    hdu 2486/2580 / poj 3922 A simple stone game 博弈论
    hdu 1517 A Multiplication Game 博弈论
    hdu 4407 Sum 容斥原理
    hdu 4686 Arc of Dream
    hdu 4588 Count The Carries
    hdu 4586 Play the Dice
    C#学习(5)
    C#学习(4)
    C#学习(3)
  • 原文地址:https://www.cnblogs.com/ly758241/p/3706469.html
Copyright © 2011-2022 走看看