zoukankan      html  css  js  c++  java
  • 7686

    $f命题:$设连续函数$f,g:$$left[ {0,1} ight] o left[ {0,1} ight]$,且$f(x)$单调递增,则$$int_0^1 {fleft( {gleft( x ight)} ight)dx} le int_0^1 {fleft( x ight)dx} + int_0^1 {gleft( x ight)dx} $$
    证明:由积分中值定理知,存在$xi in left[ {0,1} ight]$,使得
    [int_0^1 {left[ {fleft( {gleft( x ight)} ight) - gleft( x ight)} ight]dx} = fleft( {gleft( xi ight)} ight) - gleft( xi ight) = fleft( u ight) - u]
    其中$u = gleft( xi ight) in left[ {0,1} ight]$,而由$fleft( x ight)$的取值范围与单调性知
    [int_0^1 {fleft( x ight)dx} ge int_u^1 {fleft( x ight)dx} ge fleft( u ight)left( {1 - u} ight) ge fleft( u ight) - u]
    从而命题成立

  • 相关阅读:
    MUI-页面传参数
    Spring-boot:多模块打包
    PythonDay11
    PythonDay10
    PythonDay09
    PythonDay08
    PythonDay07
    PythonDay06
    PythonDay05
    PythonDay04
  • 原文地址:https://www.cnblogs.com/ly758241/p/3712685.html
Copyright © 2011-2022 走看看