zoukankan      html  css  js  c++  java
  • 68285

    证明:由连续函数的最值定理知,存在$xi  in left[ {a,b} ight]$,使得$$fleft( xi   ight){ m{ = }}mathop {max}limits_{x in left[ {a,b} ight]} fleft( x ight){ m{ = }}M$$

    从而由$fleft( x ight) in Cleft[ {a,b} ight]$知,$fleft( x ight)$在点$xi $连续,则对任给$varepsilon  > 0$,存在$delta  > 0$,使得对任意$x in left( {xi  - delta ,xi  + delta } ight) cap left[ {a,b} ight]$,有[left| {fleft( x ight) - fleft( xi   ight)} ight| < varepsilon ]

    即有$fleft( x ight) > M - varepsilon $,令${a_n} = sqrt[n]{{int_a^b {{f^n}left( x ight)} dx}}$,从而可知[{a_n} ge {left( {int_{xi  - delta }^{xi  + delta } {{{left( {M - varepsilon } ight)}^n}} dx} ight)^{frac{1}{n}}} = left( {M - varepsilon } ight){left( {2delta } ight)^{frac{1}{n}}} o M - varepsilon left( {n o infty } ight)]而[{a_n} le {left( {int_a^b {{M^n}} dx} ight)^{frac{1}{n}}} = M{left( {b - a} ight)^{frac{1}{n}}} o Mleft( {n o infty } ight)]所以有[M - varepsilon  le mathop {underline {lim } }limits_{n o infty } {a_n} le mathop {overline {lim } }limits_{n o infty } {a_n} le M]令$varepsilon   o 0$,则$mathop {underline {lim } }limits_{n o infty } {a_n} = mathop {overline {lim } }limits_{n o infty } {a_n} = M$,从而命题得证

    $f注1:$我们由$f{Hddot older不等式}$可知${a_n} = sqrt[n]{{int_a^{a + 1} {{f^n}left( x ight)} dx}}$是单调递增的(证明)

    $f注2:$我们同理可证

    $f命题:$设正值函数$fleft( x ight),gleft( x ight) in Cleft[ {a,b} ight]$,则[mathop {lim }limits_{n o infty } sqrt[n]{{int_a^b {{f^n}left( x ight)gleft( x ight)} dx}} = mathop {max}limits_{x in left[ {a,b} ight]} fleft( x ight)]

  • 相关阅读:
    django自学
    Oracle
    Linux查看日志常用命令
    Appium使用
    jmeter性能测试
    数据库连接
    redis相关
    ubuntu系统软件安装以及相关命令
    LINUX远程强制重启/proc/sys/kernel/sysrq /proc/sysrq-trigger
    sqlserver查询表大小
  • 原文地址:https://www.cnblogs.com/ly758241/p/3720310.html
Copyright © 2011-2022 走看看