证明:当$lambda = 0$时,我们有$rleft( A ight) = 1$,则由$A$实对称知,存在正交阵$P$,使得[A = {P^T}{E_{11}}P = {E_{11}}]
从而当$lambda=1$时,我们有$rleft( {{E_{11}} + B} ight) = 1$,则由${E_{11}} + B$实对称知,存在正交阵$Q$,使得[Q'left( {{E_{11}} + B} ight)Q = {E_{11}}]
所以我们有$Q'BQ = 0$,即$B=0$