$f证明$ 由于$f_n$几乎处处收敛于$f$,且$displaystyle|{f_n}|mathop { le} limits_{a.e.} F$,则令$n o infty $,有$displaystyle|{f}|mathop { le} limits_{a.e.} F$,从而由$F$可积得到$f$是可积的
$(1)$首先考虑$mleft( E ight) < infty $的情况
由于$F$可积,则由积分的全连续性知,对任给的$varepsilon > 0$,存在$delta > 0$,使得对任意可测集$e subset E$满足$mleft( e ight) < delta $时,有[int_e {Fleft( x ight)dx} < frac{varepsilon }{4}]
又由于$f_n$几乎处处收敛于$f$,则由$f{Egoroff定理}$知,对上述的$delta > 0$,存在可测集${E_delta } subset E$,使得[mleft( {Eackslash {E_delta }} ight) < delta ]且$f_n$在${E_delta }$上一致收敛于$f$,即对任给的$varepsilon > 0$,存在$N$,使得当$n ge N$时,对任意$x in {E_delta }$,有[left| {{f_n}left( x ight) - fleft( x ight)} ight| < frac{varepsilon }{{2mleft( E ight)}}]
从而可知egin{align*}left| {int_E {{f_n}left( x
ight)dx} - int_E {fleft( x
ight)dx} }
ight| &le int_E {left| {{f_n}left( x
ight) - fleft( x
ight)}
ight|dx} \
&= int_{Eackslash {E_delta }} {left| {{f_n}left( x
ight) - fleft( x
ight)}
ight|dx} + int_{{E_delta }} {left| {{f_n}left( x
ight) - fleft( x
ight)}
ight|dx} \
&< int_{Eackslash {E_delta }} {2Fleft( x
ight)dx} + frac{varepsilon }{{2mleft( E
ight)}} cdot mleft( E
ight) < frac{varepsilon }{2} + frac{varepsilon }{2} = varepsilon
end{align*}
$(2)$其次考虑一般的$E$的情况
设$left{ {{E_n}} ight}$是$E$的测度有限的单调覆盖,则由$F$可积的定义知[mathop {lim }limits_{n o infty } int_{{E_n}} {{{left[ F ight]}_n}left( x ight)dx} = int_E {Fleft( x ight)dx} ]即对任给的$varepsilon > 0$,存在$N$,使得当$n ge N$时,有[0 le int_E {Fleft( x ight)dx} - int_{{E_n}} {{{left[ F ight]}_n}left( x ight)dx} < frac{varepsilon }{4}]于是当$n ge N$时,我们有
egin{align*}
left| {int_{Eackslash {E_n}} {left[ {{f_n}left( x
ight) - fleft( x
ight)}
ight]dx} }
ight| &le int_{Eackslash {E_n}} {2Fleft( x
ight)dx} \
&= 2left( {int_E {Fleft( x
ight)dx} - int_{{E_n}} {Fleft( x
ight)dx} }
ight)\
&le 2left( {int_E {Fleft( x
ight)dx} - int_{{E_n}} {{{left[ F
ight]}_n}left( x
ight)dx} }
ight) < frac{varepsilon }{2}
end{align*}又对于测度有限的${E_n}$,由$(1)$可知,当$n ge N$时,有[left| {int_{{E_n}} {left[ {{f_n}left( x
ight) - fleft( x
ight)}
ight]dx} }
ight| < frac{varepsilon }{2}]所以对任给的$varepsilon > 0$,存在$N$,使得当$n ge N$时,有
egin{align*}
left| {int_E {left[ {{f_n}left( x
ight) - fleft( x
ight)}
ight]dx} }
ight|& le left| {int_{Eackslash {E_n}} {left[ {{f_n}left( x
ight) - fleft( x
ight)}
ight]dx} }
ight| + left| {int_{{E_n}} {left[ {{f_n}left( x
ight) - fleft( x
ight)}
ight]dx} }
ight|\
&< frac{varepsilon }{2} + frac{varepsilon }{2} = varepsilon
end{align*}
$f注1:$$f(引理)$设$f$是$E$上的可积函数,$g$是$E$上的可测函数,若$left| g ight| le f$,则$g$也是可积的
方法一
$f注2:$$f(积分的全连续性)$设$f$是$E$上的可积函数,则对任给的$varepsilon > 0$,存在$delta > 0$,使得对任意可测集$e subset E$满足$mleft( e ight) < delta $时,有[int_e {left| {fleft( x ight)} ight|dx} < frac{varepsilon }{4}]
方法一
$f注3:$