证明:令$d = mathop {inf}limits_{y in M} left| {x - y} ight|$,由下确界的定义知,存在${x_n} in M$,使得[mathop {lim }limits_{n o infty } left| {{x_n} - x} ight| = d]
下面我们证明$left{ {{x_n}} ight}$是基本列.由平行四边形公式知[{left| {{x_m} - x} ight|^2} + {left| {{x_n} - x} ight|^2} = 2left( {{{left| {frac{{{x_m} + {x_n}}}{2} - x} ight|}^2} + {{left| {frac{{{x_m} - {x_n}}}{2}} ight|}^2}} ight)]由于$frac{{{x_m} + {x_n}}}{2} in M$,则$left| {frac{{{x_m} + {x_n}}}{2} - x} ight| ge d$,从而可知[0 le frac{1}{2}{left| {{x_m} - {x_n}} ight|^2} le {left| {{x_m} - x} ight|^2} + {left| {{x_n} - x} ight|^2} - 2{d^2}]令$n,m o infty $,则$left| {{x_m} - {x_n}} ight| o 0$,所以$left{ {{x_n}} ight}$是基本列
又由于$M$为$f{Hilbert}$空间$X$的闭子空间,则存在${x_0} in M$,使得${x_n} o {x_0}$,此时[left| {x - {x_0}} ight| = mathop {lim }limits_{n o infty } left| {x - {x_n}} ight| = d]
下面我们证明$x - {x_0} ot M$.由线性子空间的定义知,对任意的$z in M,z e 0$,以及$lambda in K$,有${x_0} + lambda z in M$,于是[left| {x - left( {{x_0} + lambda z} ight)} ight| ge d]所以有[{left| {left( {x - {x_0}} ight) - lambda z} ight|^2} = {left| {x - {x_0}} ight|^2} - 2{mathop{ m Re} olimits} left( {overline lambda left( {x - {x_0}} ight),z} ight) + {left| lambda ight|^2}{left| z ight|^2} ge {d^2}]令$lambda = frac{{left( {x - {x_0},z} ight)}}{{{{left| z ight|}^2}}}$,则有
[{left| {x - {x_0}} ight|^2} - 2frac{{{{left| {left( {x - {x_0},z} ight)} ight|}^2}}}{{{{left| z ight|}^2}}} + frac{{{{left| {left( {x - {x_0},z} ight)} ight|}^2}}}{{{{left| z ight|}^2}}} = {left| {x - {x_0}} ight|^2} - frac{{{{left| {left( {x - {x_0},z} ight)} ight|}^2}}}{{{{left| z ight|}^2}}} ge {d^2}]由$left| {x - {x_0}} ight| = d$可知,$left( {x - {x_0},z} ight) = 0$,即$x - {x_0} ot M$
下面我们证明唯一性.假设还存在${x_0}^prime in M$,${x_1}^prime in {M^ ot }$,使得[x = {x_0}^prime + {x_1}^prime ]则${x_0} - {x_0}^prime in M,{x_1} - {x_1}^prime in {M^ ot }$,从而由[{x_1} - {x_1}^prime = left( {x - {x_0}} ight) - left( {x - {x_0}^prime } ight) = {x_0}^prime - {x_0} in M]可知${x_1}^prime = {x_1},{x_0}^prime = {x_0}$