证明:(1)因为$X_0$为$X$的真子空间,于是存在${x_1} in Xackslash {X_0}$,记$$d = mathop {inf }limits_{x in {X_0}} left| {x - {x_1}} ight|$$
(2)因为$X_0$是闭的,故$d>0$,否则存在${x_n} in {X_0}$,且$left| {{x_n} - {x_1}} ight| o 0$,再由$X_0$是闭的推出${x_1} in {X_0}$矛盾
(3)不妨设$varepsilon < 1$,则有$frac{d}{{1 - varepsilon }} > d$,由下确界的定义知,存在${x_2} in {X_0}$,使得[left| {{x_2} - {x_1}} ight| < frac{d}{{1 - varepsilon }}]
(4)令${x_0} = frac{{{x_1} - {x_2}}}{{left| {{x_1} - {x_2}} ight|}}$,则$left| {{x_0}} ight| = 1$,对于任何$x in {X_0}$,注意到${x_2} in {X_0}$,我们有
egin{align*}
left| {x - {x_0}}
ight|& = left| {x - frac{{{x_1} - {x_2}}}{{left| {{x_1} - {x_2}}
ight|}}}
ight| = frac{1}{{left| {{x_1} - {x_2}}
ight|}}left| {left( {left| {{x_1} - {x_2}}
ight|x + {x_2}}
ight) - {x_1}}
ight|\&
ge frac{1}{{left| {{x_1} - {x_2}}
ight|}} cdot d > 1 - varepsilon
end{align*}