zoukankan      html  css  js  c++  java
  • 6565655656

    证明:反证法,假设$X$是完备的度量空间,且是第一纲的,下面我们推出矛盾

       由于$X$是第一纲的,则$X$可表示为可数个疏朗集的并,不妨设$X = igcuplimits_{n = 1}^infty  {{M_n}} $,其中${M_n}$均为疏朗集

    任取一个闭球$B(a,1)$,由${M_1}$是疏朗集知,存在$X$中的非空闭球$Bleft( {{a_1},{r_1}} ight) subset Bleft( {a,1} ight)$,使得[Bleft( {{a_1},{r_1}} ight) cap {M_1} = emptyset ]其中不妨设$0<{r_1}<1$,又由${M_2}$是疏朗集知,存在$X$中的非空闭球$Bleft( {{a_2},{r_2}} ight) subset Bleft( {{a_1},{r_1}} ight) $,使得[Bleft( {{a_2},{r_2}} ight) cap {M_2} = emptyset ]其中不妨设$0 < {r_2} < frac{1}{2}$,如此可以选得一套非空闭球[Bleft( {{a_1},{r_1}} ight) supset Bleft( {{a_2},{r_2}} ight) supset  cdots  supset Bleft( {{a_n},{r_n}} ight) supset  cdots ]使得$Bleft( {{a_n},{r_n}} ight) cap {M_n} = emptyset $,且$0 < {r_n} < frac{1}{n}$

       于是由闭球套定理知,存在唯一的$x in igcaplimits_{n = 1}^infty  {Bleft( {{a_n},{r_n}} ight)} $,又$Bleft( {{a_n},{r_n}} ight) cap {M_n} = emptyset $,所以有$x otin igcuplimits_{n = 1}^infty  {{M_n}} $,而$X = igcuplimits_{n = 1}^infty  {{M_n}} $,出现矛盾

  • 相关阅读:
    poj 1860 Currency Exchange(最短路径的应用)
    poj 2965 The Pilots Brothers' refrigerator
    zoj 1827 the game of 31 (有限制的博弈论)
    poj 3295 Tautology (构造法)
    poj 1753 Flip Game(枚举)
    poj 2109 (贪心)
    poj 1328(贪心)
    Qt 对单个控件美化
    Qt 4基础
    Bash Shell
  • 原文地址:https://www.cnblogs.com/ly758241/p/3813224.html
Copyright © 2011-2022 走看看