zoukankan      html  css  js  c++  java
  • Codeforces Round #368 (Div. 2) Pythagorean Triples

     Pythagorean Triples
     

      Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

    For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.

    Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

    Katya had no problems with completing this task. Will you do the same?

    Input

      The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

    Output

      Print two integers m and k (1 ≤ m, k ≤ 1018), such that n, m and k form a Pythagorean triple, in the only line.

    In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

    Examples
    Input
     
    3

    Output
     
    4 5
    Input
     
    6

    Output
     
    8 10
    Input
     
    1
    Output
     
    -1

    Input
     
    17
    Output
     
    144 145
    Input
     
    67
    Output
     
    2244 2245
    Note

    Illustration for the first sample.


    题意:
      给出一条直角边,求另外的两条边(都为整数)
    思路:
      公式推导题:
        这要利用平方差公式
        令斜边为c,直角边为a、b
        c²-a²=(c+a)(c-a)
        因此(c+a)(c-a)是完全平方数,且(c-a)是(c+a)的一个因数
        1、如果(c-a)=1,则(c+a)是完全平方数(最短边是任意大于2的奇数)
        例如:5、4、3;13、12、5;25、24、7;41、40、9;...
        2、如果(c-a)=2,则(c+a)/2是完全平方数(最短边是任意大于2的偶数)
        例如:5、3、4;10、8、6;17、15、8;26、24、10;...
        即:最短边是任意一个大于2的正整数,都可以配成一个三边都是整数的直角三角形.
    AC代码
     1 # include <iostream>
     2 using namespace std;
     3 typedef long long int ll;
     4 int main()
     5 {
     6     ll n;
     7     while(cin >> n)
     8     {
     9         if(n <= 2)
    10             cout << "-1" << endl;
    11             
    12         else if(n % 2 == 1)
    13         {
    14             ll a = (n * n + 1) / 2;
    15             ll c = (n * n - 1) / 2;
    16             cout << c << " " << a << endl;
    17         }
    18         else
    19         {
    20             ll a = (n * n) / 4 + 1;
    21             ll c = (n * n) / 4 - 1;
    22             cout << c << " " << a << endl;
    23         }
    24     }
    25     return 0;
    26 }
    View Code
    
    
    生命不息,奋斗不止,这才叫青春,青春就是拥有热情相信未来。
  • 相关阅读:
    解决Linux下Qt程序报『QString::arg: Argument missing: 无法解析SSLv2_client_method中的符号』错误
    中介者模式之我们结婚吧
    POJ 2141 Message Decowding(map)
    Cocos2dx之Box2D具体解释 设置物体回复力
    Android之Window
    opencv源代码分析:cvCreateMTStumpClassifier最优弱分类器的代码框架
    LeetCode总结,二分法一般性总结
    Change Number to English By Reading rule of money
    在多台PC上进行ROS通讯-学习笔记
    编程之美初赛第二场 奇妙的数列
  • 原文地址:https://www.cnblogs.com/lyf-acm/p/5791592.html
Copyright © 2011-2022 走看看