zoukankan      html  css  js  c++  java
  • 平面内区域的计数

    若平面上的直线,任意二线不平行且任意三线不共点,则称这些直线居一般位置。下面计算n条居一般位置的直线能在平面上构成多少个区域。当n=1时,为2;当n=2时,为4;当n=3时,为7......

    猜测:在平面上n-1条居一般位置的直线添加一条直线后会增加n个区域。

    证明:我们采用数学归纳法证明的另一种技巧。暂时先把第n条直线移去,此时,根据归纳假设,由于没有第n条直线,因此第(n+1)条直线会增加n个新区域。这样我们只需证明第n条直线的存在使得第(n+1)条直线多增加一个区域。

    定理:平面上n条居一般位置的直线能把平面分割成n(n+1)/2+1个区域。

    证明:第n条直线会增加n个区域。第一条直线会构成两个区域,因此区域总数为2+2+3+4+5+...+n。即n(n+1)/2+1。

    公式:①n条直线把平面分割成的区域数: f(n)=f(n-1)+n=n(n+1)/2+1;

    ②把空间分割为最多的区域数的时候,第n个平面与前(n-1)个平面相交,且无三面共线,所以此时该平面与前(n-1)个平面有(n-1)条交线。这些交线把第n个平面分割为f(n-1)个区域,于是这个平面将原有空间一分为二,故增加了f(n-1)个空间,得递推公式:g(n)=g(n-1)+f(n-1)=(n^3+5n)/6+1

  • 相关阅读:
    C# 通过反射初探ORM框架的实现原理
    Redis-Nosql数据库入门
    HTTPS 建立连接的详细过程
    Spring面试题
    struts2面试整理
    Java面试基本知识
    Spring MVC面试整理
    Mybatis面试整理
    Sublime 正则替换
    Hiberante知识点梳理
  • 原文地址:https://www.cnblogs.com/lyf123456/p/3377727.html
Copyright © 2011-2022 走看看