zoukankan      html  css  js  c++  java
  • Python内置常用模块

    1. time和datatime
    2. Range
    3. os
    4. sys
    5. hashlib
    6. XML
    7. json & picle

    1、time和datetime

    time和datetime都是python处理时间和日期的内置模块。

    1.1 time模块

    time模块中时间表现的方式主要有三种:

      1、timestamp:时间戳,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。

      2、struct_time:时间元组,共有九个元素组。

      3、format time :格式化时间,已格式化的结构使时间更具可读性。包括自定义格式和固定格式。

     在python中直接获取看下:

     import time
    # 直接获取timestamp
    >>> time.time()
    1560409102.4841187
    # 直接获取struct_time
    >>> time.localtime()
    time.struct_time(tm_year=2019, tm_mon=6, tm_mday=13, tm_hour=14, tm_min=59, tm_sec=0, tm_wday=3, tm_yday=164, tm_isdst=0)
    # 直接获取format time
    >>> time.strftime('%Y-%m-%d %X')
    '2019-06-13 15:01:35'
    

    time模块主要通过6种方法进行时间格式的转换,看图:

    1.1.1 时间戳和时间元组转换

    >>> import time
    >>> t1 = time.time()          # 获取时间戳并赋值
    >>> time.localtime(t1)        # 将时间戳转换为时间元组
    time.struct_time(tm_year=2019, tm_mon=6, tm_mday=13, tm_hour=16, tm_min=25, tm_sec=14, tm_wday=3, tm_yday=164, tm_isdst=0)
    
    
    >>> t2 = time.localtime()    # 获取时间元组并赋值
    >>> time.mktime(t2)          # 将时间元组转换为时间戳
    1560414512.0

    函数gmtime()的用法和localtime() 类似,localtime作用是格式化时间戳为本地的时间,gmtime()作用是格式化时间戳为格林尼治时间(世界标准时间UTC)。

    1.1.2. 格式化时间和时间元组转换

     time.strftime() 函数接收以时间元组,并返回以可读字符串表示的当地时间,格式由参数format决定;time.strptime() 函数接收以格式化时间,并返回时间元组,语法如下:

    time.strftime(format,t1)

    time.strptime(t2,format)

    参数说明:

    • format — 格式字符串。
    • t1 — 可选的参数t是一个struct_time对象
    • t2 — 可选的参数t是一个format time对象
    >>> import time
    >>> time.strftime('%Y-%m-%d %X',time.localtime())
    '2019-06-13 17:26:55'
    >>> time.strptime('2019-05-01 14:10:15','%Y-%m-%d %X')
    time.struct_time(tm_year=2019, tm_mon=5, tm_mday=1, tm_hour=14, tm_min=10, tm_sec=15, tm_wday=2, tm_yday=121, tm_isdst=-1)
    
    
    # 时间元组中属性及值
          属性                            值
        tm_year(年)                  比如2017 
        tm_mon(月)                   1 - 12
        tm_mday(日)                  1 - 31
        tm_hour(时)                  0 - 23
        tm_min(分)                   0 - 59
        tm_sec(秒)                   0 - 61
        tm_wday(weekday)             0 - 6(0表示周日)
        tm_yday(一年中的第几天)        1 - 366
        tm_isdst(是否是夏令时)        默认为-1(1:是;0:否;-1:未知)
    
    
    格式化时间中格式对应属性
           %Y  年 Year with century as a decimal number.
        %m  月  Month as a decimal number [01,12].
        %d  日  Day of the month as a decimal number [01,31].
        %H  时  Hour (24-hour clock) as a decimal number [00,23].
        %M  分  Minute as a decimal number [00,59].
        %S  秒  Second as a decimal number [00,61].
        %z      Time zone offset from UTC.
        %a  周几简写(英文Sun)    Locale's abbreviated weekday name.
        %A  周几全名(英文Sunday)    Locale's full weekday name.
        %b  月份简写(英语Apr)    Locale's abbreviated month name.
        %B  月份全名(英语April)    Locale's full month name.
        %c      Locale's appropriate date and time representation.
        %I  十二小时制小时数   Hour (12-hour clock) as a decimal number [01,12].
        %p  AM/PM   Locale's equivalent of either AM or PM.
           %X   本地相应时间
        %x   本地相应日期
    

    1.1.3. 还有2种转换

    因为格式化的时间字符串可读性很高,所以有时需要将时间戳或时间元组转换为格式化时间:

     time.ctime() 函数把一个时间戳(按秒计算的浮点数)转化为格式化时间的形式。 如果参数未给或者为None的时候,将会默认time.time()为参数,

     time.asctime()如果参数未给或者为None的时候,将会默认time.localtime()为参数。

    >>> import time
    >>> time.ctime(1187640983)       # 传入一个时间戳
    'Tue Aug 21 04:16:23 2007'
    >>> time.asctime()            # 默认time.localtime()为参数
    'Thu Jun 13 18:05:58 2019'
    >>> time.asctime(time.localtime())
    'Thu Jun 13 18:06:37 2019'
    

    另外还有time.sleep()方法推迟调用程序的运行。

    1.2 datetime模块

    datatime模块重新封装了time模块,提供更多接口,提供的类有:date,time,datetime,timedelta,tzinfo。

    这里就只看一下datetime和timedelta类:

    datetime.today():返回一个表示当前本地时间的datetime对象;
    datetime.now([tz]):返回一个表示当前本地时间的datetime对象,如果提供了参数tz,则获取tz参数所指时区的本地时间;
    datetime.utcnow():返回一个当前utc时间的datetime对象;格林尼治时间
    datetime.fromtimestamp(timestamp[, tz]):根据时间戮创建一个datetime对象,参数tz指定时区信息;
    datetime.utcfromtimestamp(timestamp):根据时间戮创建一个datetime对象;格林尼治时间
    datetime.combine(date, time):参数是datetime.datetime类的对象、datetime.date对象、datetime.time对象,得到一个datetime.datetime对象;
    datetime.strptime(date_string, format):将格式字符串转换为datetime对象;

    方法和属性

    dt=datetime.datetime.now()     #datetime对象
    dt.year、month、day、hour、minute、second、microsecond、tzinfo:
    dt.date():获取date对象;
    dt.time():获取time对象;
    dt. replace ([ year[ , month[ , day[ , hour[ , minute[ , second[ , microsecond[ , tzinfo] ] ] ] ] ] ] ]):
    dt. timetuple ()
    dt. utctimetuple ()
    dt. toordinal ()
    dt. weekday ()
    dt. isocalendar ()
    dt. isoformat ([ sep] )
    dt. ctime ():返回一个日期时间的C格式字符串,等效于time.ctime(time.mktime(dt.timetuple()));
    dt. strftime (format)

    datetime加减

    对日期和时间进行加减实际上就是把datetime往后或往前计算,得到新的datetime。加减可以直接用+-运算符,不过需要导入timedelta这个类:

    >>> from datetime import datetime, timedelta
    >>> now = datetime.now()
    >>> now
    datetime.datetime(2015, 5, 18, 16, 57, 3, 540997)
    >>> now + timedelta(hours=10)
    datetime.datetime(2015, 5, 19, 2, 57, 3, 540997)
    >>> now - timedelta(days=1)
    datetime.datetime(2015, 5, 17, 16, 57, 3, 540997)
    >>> now + timedelta(days=2, hours=12)
    datetime.datetime(2015, 5, 21, 4, 57, 3, 540997)
    时区转换

    我们可以先通过utcnow()拿到当前的UTC时间,再转换为任意时区的时间:

    # 拿到UTC时间,并强制设置时区为UTC+0:00:
    >>> utc_dt = datetime.utcnow().replace(tzinfo=timezone.utc)
    >>> print(utc_dt)
    2015-05-18 09:05:12.377316+00:00
    # astimezone()将转换时区为北京时间:
    >>> bj_dt = utc_dt.astimezone(timezone(timedelta(hours=8)))
    >>> print(bj_dt)
    2015-05-18 17:05:12.377316+08:00
    # astimezone()将转换时区为东京时间:
    >>> tokyo_dt = utc_dt.astimezone(timezone(timedelta(hours=9)))
    >>> print(tokyo_dt)
    2015-05-18 18:05:12.377316+09:00
    # astimezone()将bj_dt转换时区为东京时间:
    >>> tokyo_dt2 = bj_dt.astimezone(timezone(timedelta(hours=9)))
    >>> print(tokyo_dt2)
    2015-05-18 18:05:12.377316+09:00

    时区转换的关键在于,拿到一个datetime时,要获知其正确的时区,然后强制设置时区,作为基准时间。

    利用带时区的datetime通过astimezone()方法,可以转换到任意时区。

    注:不是必须从UTC+0:00时区转换到其他时区,任何带时区的datetime都可以正确转换,例如上述bj_dt到tokyo_dt的转换。

     2、random模块

    Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个方法:

    import random
    
    1. random.random()       # 用于生成一个0到1的随机浮点数:0<= n < 1.0
    >>> random.random()
    0.9646844371759081
    
    2. random.uniform(a,b)    # 用于生成一个指定范围内的随机符点数n: a <= n <= b
    >>> random.uniform(5,10)
    6.584158762448463
    
    3. random.randint(a,b)     # 用于生成一个指定范围内的随机整数n: a <= n <= b
    >>> random.randint(4,10)
    6
    
    4. random.randrange([start],stop,step)    # 从指定范围内,按指定基数递增的集合中获取一个随机数
    >>> random.randrange(10,18,3)
    16
    
    5. random.choice(sequence)      # 从序列sequence中获取一个随机元素
    >>> random.choice('hello world')
    'r'
    
    6. random.shuffle()       # 用于将一个列表中的元素打乱,即将列表内的元素随机排列
    >>> p=[1,2,3,4,5,6,7]
    >>> random.shuffle(p)
    >>> p
    [5, 1, 6, 7, 4, 3, 2]
    
    7. random.sample(sequence,k)     # 从指定序列sequence中随机获取指定长度k的片断并随机排列。注意:sample函数不会修改原有序列。
    >>> L = ['A','B','C',1,2,3]
    >>> random.sample(L,3)
    [3, 'B', 1]
    >>> L
    ['A', 'B', 'C', 1, 2, 3]
    

    3、OS模块

    os模块提供了多数操作系统的功能接口函数。当os模块被导入后,它会自适应于不同的操作系统平台,根据不同的平台进行相应的操作,

    在python编程时,经常和文件、目录打交道,所以离不了os模块。

    os.getcwd()     获取当前工作的目录
    os.chdir(path)    改变目录到指定path目录,注意windows标准路径分隔符为‘//’
    os.makedirs('dirname1/dirname2')    可生成多层递归目录
    os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
    os.mkdir('dirname')    生成单级目录
    os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错
    os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
    os.remove()  删除一个文件
    os.rename("oldname","newname")  重命名文件/目录
    os.stat('path/filename')  获取文件/目录信息
    os.sep    输出操作系统特定的路径分隔符,win下为"\",Linux下为"/"
    os.linesep    输出当前平台使用的行终止符,win下为"	
    ",Linux下为"
    "
    os.pathsep    输出用于分割文件路径的字符串
    os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
    os.environ  获取系统环境变量
    
    os.path.abspath(path)  返回path规范化的绝对路径
    os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
    os.path.split(path)  将path分割成目录和文件名的二元组返回
    os.path.splitext(path)  将path分割成目录和文件扩展名的二元组返回
    os.path.dirname(path)  返回path的目录。其实就是os.path.split(path)的第一个元素
    os.path.basename(path)  返回path最后的文件名。如何path以/或结尾,那么就会返回空值。即os.path.split(path)的第二个元素
    os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
    os.path.isabs(path)  如果path是绝对路径,返回True
    os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
    os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
    os.path.getatime(path)  返回path所指向的文件或者目录的最后存取时间
    os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
    os.path.getsize(filename)     获取文件大小,目录返回0
    

    还有

    os.system()   用于运行外部程序
        如web浏览器,在UNIX中,可以这样(找到浏览器位置)
        os.system('/usr/bin/firefox')
        在Windows中,可以这样(同样,找到浏览器位置)
        os.system(r'C:"Program Files (x86)""Mozilla Firefox"firefox.exe')
        注意,这里用引号将Program Files (x86)和Mozilla Firefox括起来了。如果不这样做,底层的shell将受阻与空白处,而且这里必须用反斜杠。
    
    os.startfile()   Windows特有的函数,同system,而且略微比system好用
        os.system(r'C:Program Files (x86)Mozilla Firefoxfirefox.exe')
        os.startfile接受一个普通路径,即便有空白也没有关系
    
    实际操作后发现后者比前者好用(Windows),不光是空白原因。
    View Code

     4、sys模块

    sys.argv   命令行参数,包括脚本名
    sys.exit([arg])    退出当前程序,可通过可选参数指定返回值或错误消息
    sys.path    返回一个列表,包含模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
    sys.platform    返回操作系统平台名称
    sys.version     获取Python解释程序的版本信息
    sys.stdin       标准输入流 —— 一个类似于文件的对象
    sys.stdout     标准输出流 —— 一个类似于文件的对象
    sys.stderr      标准错误流 —— 一个类似于文件的对象
    

    关于sys.argv

    # 解释为:命令行参数,包括脚本(程序本身)名
    # sys.argv[]说白了就是一个从程序外部获取参数的桥梁,这个“外部”很关键,因为我们从外部取得的参数可以是多个,所以获得的是一个列表(list),
    # 即sys.argv其实可以看作是一个列表,所以才能用[]提取其中的元素。其第一个元素是程序本身,随后才依次是外部给予的参数。
    # 下面通过一个argv_test.py的例子看下:
    # argv_test.py
    
    import sys
    a=sys.argv[0]
    print(a)
    
    # 然后命令行运行:python argv_test.py  得到如下结果
    argv_test.py
    # 这就是‘0’指程序本身
    
    # 然后将0改成1,再运行一次,这次要加上一个参数:python argv_test.py hello  得到:
    hello
    
    # 那我们再把代码修改一下:a=sys.argv[2:]
    # 保存后,再运行程序,这次多加几个参数,以空格隔开:python argv_test.py a b c d e f   得到:
    ['b', 'c', 'd', 'e']
    
    
    # sys.argv[ ]其实就是一个列表,里边的项为用户输入的参数,关键就是要明白这参数是从程序外部输入的,
    # 而非代码本身的什么地方,要想看到它的效果就应该将程序保存了,从外部来运行程序并给出参数。
    View Code

     5、hashlib模块

    Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。

    什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用

    16进制的字符串表示)。

    我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:

    import hashlib
    
    md5 = hashlib.md5()
    md5.update('This is hashlib'.encode('utf-8'))
    print(md5.hexdigest())
    
    # 执行结果如下:
    '4965310fcf57676786876118fd09912e'
    

    如果内容较多可以分多次调用update,最后得到的密文和一次性输入是一样的(注意空格)。

    MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示

    另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:

    import hashlib
    sh =  hashlib.sha1()
    sh.update('This is '.encode('utf-8'))
    sh.update('hashlib'.encode('utf-8'))
    sh.hexdigest()
    
    # 执行结果如下:
    'cb61e3638d1cffe5c3080f358a33cb526ca7458c'

    比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法不仅越慢,而且摘要长度更长。

    有没有可能两个不同的数据通过某个摘要算法得到了相同的摘要?完全有可能,因为任何摘要算法都是把无限多的数据集合映射到一

    个有限的集合中。这种情况称为碰撞,这种情况可能出现,但是非常非常困难。

     6、XML处理模块

    首先关于xml不做介绍,想了解可以自行搜索或者去菜鸟驿站了解一下,而且也有该模块的教程。

    常见的 XML 编程接口有 DOM 和 SAX,这两种接口处理 XML 文件的方式不同,当然使用场合也不同。

    Python 有三种方法解析 XML,SAX,DOM,以及 ElementTree,简单说下:

    SAX:用事件驱动模型,通过触发事件和回调函数来处理XML文件,是流式读取XML文件,比较快,占用内存少,但需要用户实现回调。

    DOM:将 XML 数据在内存中解析成一个树,通过对树的操作来操作XML,DOM功能齐全,但是比较笨重,一是比较慢,二是比较耗内存。

    ElementTree:就像一个轻量级的DOM,具有方便友好的API。代码可用性好,速度快,消耗内存少。

    这里就只简单讨论一下ElementTree解析方式

    6.1 API名称

    from xml.etree import ElementTree as ET
    

    6.2 基本概念

    <country name="Liechtenstein">
        <rank>1</rank>
        <year>2008</year>
        <gdppc>141100</gdppc>
        <neighbor name="Austria" direction="E"/>
        <neighbor name="Switzerland" direction="W"/>
    </country>
    我们把<country>xxx</contry>这种结构称为一个element,country称作element的tag,<></>之间的内容称作element的text或data,<>中的name称作element的attrib,而整个XML树被称作ElementTree。
    element是一个名为xml.etree.ElementTree.Element的类,其描述为:
    class xml.etree.ElementTree.Element(tag, attrib={}, **extra)
    此类的所有属性和方法查看:
    https://docs.python.org/2/library/xml.etree.elementtree.html   #element-objects
    

    6.3 方法释义

    读取xml数据

    --读取XML文件
    import xml.etree.ElementTree as ET
    tree = ET.parse('country_data.xml')
    root = tree.getroot()
    --读取XML字符串
    root = ET.fromstring(country_data_as_string)
    --获取element object的四大属性tag、text、attrib以及tail
     root.tag #root element的tag
     root.text #root element的text
     root.attrib #root element本身的attrib,dict格式的
     root.tail #root element的tag结束到下一个tag之间的text
     --通过DICT逻辑获取树形结构的text,表示第一个child的第二个child element的text
     root[0][1].text
    

    element object的方法

    Element.iter(tag) --遍历当前element树所有子节点的element(无论是子节点还是子节点的子节点),找到符合指定tag名的所有element,如果tag为空则遍历当前element树,返回所有节点element(包含当前父节点)。2.7和3.2之前的版本无此方法,可以用getiterator()代替。
    Element.findall(tag) --遍历当前节点的直接子节点,找到符合指定tag名的element,返回由element组成的list
    Element.find(tag) --遍历当前节点的直接子节点,找到符合指定tag名的第一个element
    Element.get(key) --在当前element中获取符合指定attrib名的value
    ...其他方法参考官网
    

    修改XML内容

    ElementTree.write(file, encoding="us-ascii", xml_declaration=None, default_namespace=None, method="xml")  --将之前的修改写入XML
    Element.set(key,value) --设置element attrib
    Element.append(subelement) --新增一个子element,extends(subelements)是3.2的新增用法,输入参数必须是一个element序列
    Element.remove(subelement) --删除指定tag的element
    示例:
    >>> for rank in root.iter('rank'):
    ...     new_rank = int(rank.text) + 1
    ...     rank.text = str(new_rank)
    ...     rank.set('updated', 'yes')
    ...
    >>> tree.write('output.xml')
    

    6.4 实例

    xml的格式如下,就是通过<>节点来区别数据结构的(country_data.xml)

    <?xml version="1.0"?>
    <data>
        <country name="Liechtenstein">
            <rank updated="yes">2</rank>
            <year>2008</year>
            <gdppc>141100</gdppc>
            <neighbor name="Austria" direction="E"/>
            <neighbor name="Switzerland" direction="W"/>
        </country>
        <country name="Singapore">
            <rank updated="yes">5</rank>
            <year>2011</year>
            <gdppc>59900</gdppc>
            <neighbor name="Malaysia" direction="N"/>
        </country>
        <country name="Panama">
            <rank updated="yes">69</rank>
            <year>2011</year>
            <gdppc>13600</gdppc>
            <neighbor name="Costa Rica" direction="W"/>
            <neighbor name="Colombia" direction="E"/>
        </country>
    </data>
    

    操作xml

    import xml.etree.ElementTree as ET
     
    tree = ET.parse("xmltest.xml")
    root = tree.getroot()
    print(root.tag)
     
    #遍历xml文档
    for child in root:
        print(child.tag, child.attrib)
        for i in child:
            print(i.tag,i.text)
     
    #只遍历year 节点
    for node in root.iter('year'):
        print(node.tag,node.text)
    

    删除、修改xml内容

    import xml.etree.ElementTree as ET
     
    tree = ET.parse("xmltest.xml")
    root = tree.getroot()
     
    #修改
    for node in root.iter('year'):
        new_year = int(node.text) + 1
        node.text = str(new_year)
        node.set("updated","yes")
     
    tree.write("xmltest.xml")
     
     
    #删除node
    for country in root.findall('country'):
       rank = int(country.find('rank').text)
       if rank > 50:
         root.remove(country)
     
    tree.write('output.xml')
    

    自己创建xml文档

    import xml.etree.ElementTree as ET
     
    new_xml = ET.Element("namelist")
    name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
    age = ET.SubElement(name,"age",attrib={"checked":"no"})
    sex = ET.SubElement(name,"sex")
    sex.text = '33'
    name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
    age = ET.SubElement(name2,"age")
    age.text = '19'
     
    et = ET.ElementTree(new_xml) #生成文档对象
    et.write("test.xml", encoding="utf-8",xml_declaration=True)
     
    ET.dump(new_xml) #打印生成的格式
    

    7、json&pickle模块

    通过将对象序列化可以将其存储在变量或者文件中,可以保存当时对象的状态,并且需要时可以通过反序列化再次将这个对象读取出来。

    python中用于序列化的主要有两个模块

    • json,如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
    • pickle,用于python特有的类型和python的数据类型间进行转换,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据。

    Json模块提供了四个功能:dumps和dump(序列化)、loads和load(反序列化)

    pickle模块提供了四个功能:dumps、dump、loads、load

    >>> import pickle
    
    # pickle.dumps()方法把任意对象序列化成一个bytes
    >>> data = dict(name='Eric',age=23,score=59)
    >>> d = pickle.dumps(data)
    >>> d
    b'x80x03}qx00(Xx04x00x00x00nameqx01Xx04x00x00x00Ericqx02Xx03x00x00x00ageqx03Kx17Xx05x00x00x00scoreqx04K;u.'
    
    # pickle.dump()直接把对象序列化后写入一个文件
    >>> f = open('info.txt','wb')
    >>> pickle.dump(data,f)
    >>> f.close()
    
    # pickle.loads()方法可以把bytes反序列化
    >>> pickle.loads(d)
    {'name': 'Eric', 'age': 23, 'score': 59}
    
    # pickle.load()方法从一个文件中直接反序列化出对象
    >>> f = open('info.txt','rb')
    >>> data_1=pickle.load(f)
    >>> data_1
    {'name': 'Eric', 'age': 23, 'score': 59}
    

    json进阶

    JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

    JSON类型Python类型
    {} dict
    [] list
    "string" str
    1234.56 int或float
    true/false True/False
    null None

    Python的dict对象可以直接序列化为JSON的{},不过,很多时候,大家更喜欢用class表示对象,比如定义Students类,然后序列化:

    import json
    
    class Student(object):
        def __init__(self, name, age, score):
            self.name = name
            self.age = age
            self.score = score
    
    s = Student('Eric', 20, 59)
    print(json.dumps(s))
    
    # 执行结果如下:
    Traceback (most recent call last):
      ...
    TypeError:Object of type Student is not JSON serializable
    

    错误的原因是Student对象不是一个可序列化为JSON的对象

    仔细看看dump()方法的参数列表,可以发现,除了第一个必须的obj参数外,dump()方法还提供了一大堆的可选参数:

    https://docs.python.org/3/library/json.html#json.dumps

    可选参数default就是把任意一个对象变成一个可序列为JSON的对象,这里需要把class转换成dict:

    print(json.dumps(s, default=lambda obj: obj.__dict__))

    因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。

    同样的道理,如果我们要把JSON反序列化为一个Student对象实例,load()方法首先转换出一个dict对象,然后,我们传入的object_hook函数把dict实例Student实例:

    def dict2student(d):
        return Student(d['name'], d['age'], d['score'])

    即有:

    s = Student('Eric', 20, 59)
    
    #序列化
    f = open('class_pickle.txt', 'w')       
    json.dump(s, f, default=lambda obj: obj.__dict__)
    f.close()
    
    # 反序列化
    def dict2studend(d):
        return Student(d['name'], d['age'], d['score'])
    
    
    f = open('class_pickle.txt', 'r')
    d = json.load(f, object_hook=dict2studend)
    f.close()
    print(d)
    

      

    终日不为以思,无益,不如学也
  • 相关阅读:
    c# 执行windows模拟登录
    c#文件压缩解压
    c#文件上传下载功能实现
    .NET core3.1 使用Jwt保护api
    我所理解的闭包
    数组遍历for forEach for..in for..of
    变量提升
    微信小程序做radio,可以拖动进度条
    css:flex
    css常用布局
  • 原文地址:https://www.cnblogs.com/lymlike/p/11017417.html
Copyright © 2011-2022 走看看