zoukankan      html  css  js  c++  java
  • 多项分布(multinominal distribution)

    简介

    更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布。

    定义

    二项分布推广至多个(大于2)互斥事件的发生次数,就得到了多项分布。二项分布的典型例子是扔硬币,硬币正面朝上概率为p, 重复扔n次硬币,k次为正面的概率即为一个二项分布概率。(严格定义见二项分布中伯努利实 验定义)把二项扩展为多项就得到了多项分布。比如扔骰子,不同于扔硬币,骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应 p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有x次都是点数6朝上的概率就是:
    。更一般性的问题会问:“点数1~6的出现次数分别为(x1,x2,x3,x4,x5,x6)时的概率是多少?其中sum(x1~x6)= n”。这就是一个多项式分布问题。这时只需用上边公式思想累乘约减就会得到下面图1的概率公式。
    某随机实验如果有k个可能结局A1、A2、…、Ak,分别将他们的出现次数记为随机变量X1、X2、…、Xk,它们的概率分布分别是p1,p2,…,pk,那么在n次采样的总结果中,A1出现n1次、A2出现n2次、…、Ak出现nk次的这种事件的出现概率P有下面公式:
    用另一种形式写为:

    2公式应用编辑

    概率公式

    这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的通项。
    我们知道,在代数学里当k个变量的和的N次方的展开式(p1+ p2+…+ pk )^N 是一个多项式,其一般项就是前面的公式给出的值。如果这k个变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而必然事件的概率等于1,于是上面的多项式就变成了 (p1+ p2+…+ pk )^N =1^N=1, 即此时多项式的值等于1。
    因为(p1+ p2+…+ pk )^N的值等于1, 我们也就认为它代表了一个必然事件进行了N 次抽样的概率(=1,必然事件)。而当把这个多项式可 以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率, 即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现 概率。这样就得到了前面的公式。
    如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/k。把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式:
    ∑[ N!/(n1!n2!…nk!)](1/k)^N=1
    即 ∑[ N!/(n1!n2!…nk!)]=k^N
    以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于N。即 n1+n2+…nk=N.

    应用

    用于处理一次实验有多个可能的结果的情况。
    热力学讨论物质微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率) 并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k,于是 [N!/(n1!n2!…nk!)](1/kN) 就真正具有数学上的概率的含义。换句话说,物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有归一性) 的概率了。
  • 相关阅读:
    汉字数组排序及如何检测汉字
    响应式web布局中iframe的自适应
    CSS3的flex布局
    关于BFC不会被浮动元素遮盖的一些解释
    趣谈unicode,ansi,utf-8,unicode big endian这些编码有什么区别(转载)
    深入seajs源码系列三
    深入seajs源码系列二
    深入seajs源码系列一
    韩国"被申遗" (转自果壳)
    Understanding delete
  • 原文地址:https://www.cnblogs.com/lysuns/p/4633622.html
Copyright © 2011-2022 走看看