Description
给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点
Input
* Line 1: Two integers N and M.
* Lines 2..M+1: Line i+1 contains a_i and b_i.
Output
* Line 1: The maximum possible number of spotted cows on FJ's farm, or -1 if there is no possible solution.
Sample Input
5 3
1 4
2 5
3 4
INPUT DETAILS: There are 5 cows and 3 photos. The first photo contains cows 1 through 4, etc.
1 4
2 5
3 4
INPUT DETAILS: There are 5 cows and 3 photos. The first photo contains cows 1 through 4, etc.
Sample Output
1
OUTPUT DETAILS: From the last photo, we know that either cow 3 or cow 4 must be spotted.
OUTPUT DETAILS: From the last photo, we know that either cow 3 or cow 4 must be spotted.
By choosing either of these, we satisfy the first two photos as well.
——————————————————————————————————
我们用f[i]表示选i这个位置放置特殊点的最优解
那么我们发现每个点可以选择的范围是一个区间
并且容易证明这个区间是随着位置的增加而右移也就是单调递增的
因为你选择了这个点 那么包含这个点的所有区间都不能再加点了
所以r【i】=min(包含i的区间的左端点-1)
因为每个区间都要有点所以l【i】=完整在i左边的区间中左端点的max
这样我们就得到了每个点的转移区间
这样完美符合单调队列的性质 所以就可以写了
#include<cstdio> #include<cstring> #include<algorithm> using std::min; using std::max; const int M=250007,inf=0x3f3f3f3f; int read(){ int ans=0,f=1,c=getchar(); while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();} while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();} return ans*f; } int n,m,x,y; int l[M],r[M],f[M]; int q[M],ql=1,qr; int main(){ n=read(); m=read(); for(int i=1;i<=n+1;i++) r[i]=i-1; for(int i=1;i<=m;i++){ x=read(); y=read(); r[y]=min(r[y],x-1); l[y+1]=max(l[y+1],x); } for(int i=n;i;i--) r[i]=min(r[i],r[i+1]); for(int i=2;i<=n+1;i++) l[i]=max(l[i],l[i-1]); f[qr=1]=0; for(int i=1;i<=n+1;i++){ for(int k=r[i-1]+1;k<=r[i];k++){ while(ql<=qr&&f[q[qr]]<=f[k]) qr--; q[++qr]=k; } while(ql<=qr&&q[ql]<l[i]) ql++; if(ql>qr) f[i]=-inf; else f[i]=f[q[ql]]+1; } if(f[n+1]>=0) printf("%d ",f[n+1]-1); else printf("-1 "); return 0; }