zoukankan      html  css  js  c++  java
  • [LeetCode 1167] Minimum Cost to Connect Sticks

    You have some sticks with positive integer lengths.

    You can connect any two sticks of lengths X and Y into one stick by paying a cost of X + Y.  You perform this action until there is one stick remaining.

    Return the minimum cost of connecting all the given sticks into one stick in this way.

     

    Example 1:

    Input: sticks = [2,4,3]
    Output: 14
    

    Example 2:

    Input: sticks = [1,8,3,5]
    Output: 30
    

     

    Constraints:

    • 1 <= sticks.length <= 10^4
    • 1 <= sticks[i] <= 10^4

    This is a direct application of the Huffman Coding algorithm. In this problem, each stick's length is the equivalence of character frequency, the goal here is to merge all sticks into one stick with the minimum cost, this is essentially the same with building a Huffman tree with minimum cost. Each merge operation merges two meta-sticks(two subtrees) into one subtree with the introduction of a new internal tree node. The gist of the Huffman Coding is to greedily pick the 2 least frequent characters and merge them, then recursively solve a smaller problem with 1 fewer character. In this problem, this translates into picking the 2 least stick lengths.

    There are two efficient ways of implementing the Huffman Coding algorithm.

    Solution 1. PriorityQueue

    Since we conduct repeated finding minimum operations, PriorityQueue suits well for such application. 

    class Solution {
        public int connectSticks(int[] sticks) {
            PriorityQueue<Integer> minPq = new PriorityQueue<>();
            for(int v : sticks) {
                minPq.add(v);
            }
            int cost = 0;
            while(minPq.size() > 1) {
                int v1 = minPq.poll();
                int v2 = minPq.poll();
                cost += (v1 + v2);
                minPq.add(v1 + v2);
            }
            return cost;
        }
    }

    Solution 2. Sorting + Two Queue

    Alternatively, we can preprocess the input by sorting it, then manage two queues. The first queue initially stores all input. The second queue is used to store all the meta sticks' length after merging operations. As long as there is more than 1 element left in these 2 queues combined, we repeatedly pick the 2 smallest stick lengths and merge them.

    class Solution {
        public int connectSticks(int[] sticks) {
            Arrays.sort(sticks);
            ArrayDeque<Integer> q1 = new ArrayDeque<>();
            ArrayDeque<Integer> q2 = new ArrayDeque<>();
            for(int v : sticks) {
                q1.addLast(v);
            }
            
            int cost = 0;
            while(!(q1.size() == 1 && q2.size() == 0 || q1.size() == 0 && q2.size() == 1)) {
                int c1 = Integer.MAX_VALUE, c2 = Integer.MAX_VALUE;
                if(q1.size() > 0 && (q2.size() == 0 || q1.peekFirst() <= q2.peekFirst())) {
                    c1 = q1.pollFirst();
                }
                else {
                    c1 = q2.pollFirst();
                }
                if(q1.size() > 0 && (q2.size() == 0 || q1.peekFirst() <= q2.peekFirst())) {
                    c2 = q1.pollFirst();
                }
                else {
                    c2 = q2.pollFirst();
                }
                cost += (c1 + c2);
                q2.addLast(c1 + c2);
            }
            return cost;
        }
    }
  • 相关阅读:
    callable函数,检查对象是否可调用
    eval函数的一些用法
    divmod函数使用
    sorted(x, reverse=True)
    列表、元组、字典空格的几种移除方法
    约瑟夫环问题(通过观察得出递推式从而建立递归求解)
    快速幂算法(二分思想减少连乘次数)
    素数筛(埃氏筛法与欧拉筛)
    KMP算法的详细解释
    对于线性代数的形象化理解(1)
  • 原文地址:https://www.cnblogs.com/lz87/p/12231837.html
Copyright © 2011-2022 走看看