zoukankan      html  css  js  c++  java
  • [LeetCode 1277] Count Square Submatrices with All Ones

    Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

     

    Example 1:

    Input: matrix =
    [
      [0,1,1,1],
      [1,1,1,1],
      [0,1,1,1]
    ]
    Output: 15
    Explanation: 
    There are 10 squares of side 1.
    There are 4 squares of side 2.
    There is  1 square of side 3.
    Total number of squares = 10 + 4 + 1 = 15.
    

    Example 2:

    Input: matrix = 
    [
      [1,0,1],
      [1,1,0],
      [1,1,0]
    ]
    Output: 7
    Explanation: 
    There are 6 squares of side 1.  
    There is 1 square of side 2. 
    Total number of squares = 6 + 1 = 7.
    

     

    Constraints:

    • 1 <= arr.length <= 300
    • 1 <= arr[0].length <= 300
    • 0 <= arr[i][j] <= 1

    The brute force solution of using each cell as the top left corner and check all possible square submatrices has runtime of O(N^3) * O(N^2), which is too slow. 

    O(N^2) dynamic programming solution

    The final answer is the sum of the number of square submatrices at cell (i, j) over all cells. So let's define dp[i][j] as the maximum side length of the square submatrix whose bottom right corner is cell (i, j). The maximum side length also equals to the number of square submatrices with bottom right corner at cell (i, j). So dp[i][j] is also the number of square submatrices whose bottom right corner is cell (i, j). 

    If cell (i, j) is 0, then dp[i][j] is 0; Otherwise, to compute dp[i][j], we need to take the minimum side length of dp[i - 1][j], dp[i][j - 1] and dp[i - 1][j - 1] and add 1 to this min. 

    class Solution {
        public int countSquares(int[][] matrix) {
            int m = matrix.length, n = matrix[0].length, cnt = 0;  
            //dp[i][j]: the number of square submatrices whose bottom right corner is cell (i, j)
            //also the maximum side length of the square submatrix whose bottom right corner is cell (i, j)
            int[][] dp = new int[m][n];
            for(int i = 0; i < m; i++) {
                for(int j = 0; j < n; j++) {
                    if(matrix[i][j] == 1 && i > 0 && j > 0) {
                        dp[i][j] = 1 + Math.min(Math.min(dp[i - 1][j], dp[i][j - 1]),dp[i - 1][j - 1]);
                    }
                    else {
                        dp[i][j] = matrix[i][j];
                    }
                    cnt += dp[i][j];
                }
            }
            return cnt;
        }
    }

      

    Related Problems

    [LeetCode 1504] Count Submatrices With All Ones

  • 相关阅读:
    [HNOI2008]玩具装箱TOY
    [洛谷P3628] [APIO2010]特别行动队
    [洛谷P2698] [USACO12MAR]花盆Flowerpot
    [SCOI2010]股票交易
    [洛谷P3957] 跳房子
    [洛谷P1822] 魔法指纹
    [NOI2003] 文本编辑器
    平衡树小结
    C++异常处理
    常用颜色的RGB值
  • 原文地址:https://www.cnblogs.com/lz87/p/14395076.html
Copyright © 2011-2022 走看看