zoukankan      html  css  js  c++  java
  • [LintCode] Jump Game

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Determine if you are able to reach the last index.

    This problem have two method which is Greedy and Dynamic Programming.

    The time complexity of Greedy method is O(n).

    The time complexity of Dynamic Programming method is O(n^2).

    We manually set the small data set to allow you pass the test in both ways. This is just to let you learn how to use this problem in dynamic programming ways. If you finish it in dynamic programming ways, you can try greedy method to make it accept again.

    Example

    A = [2,3,1,1,4], return true.

    A = [3,2,1,0,4], return false.

    Solution 1.  Recursion without memoization 

    Recursive formula: f(n) =  true if there is at least one i (from 0 to n - 1) that satisfies i + A[i] >= n and f(i) = true.

              f(n) = false if there is no such i.

    This solution is not efficient as it does duplicate work to compute the same subproblems over and over.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         return helper(A, A.length - 1);
     7     }
     8     private boolean helper(int[] A, int idx){
     9         if(idx == 0){
    10             return true;
    11         }
    12         boolean ret = false;
    13         for(int i = 0; i < idx; i++){
    14             if(i + A[i] >= idx){
    15                 if(helper(A, i)){
    16                     return true;
    17                 }
    18             }
    19         }
    20         return false;
    21     }
    22 }

    Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space 

    The natural way of optimizing solution 1 is to avoid duplicated work by using memoization.

     1 public class Solution {
     2     private boolean[] T;
     3     private boolean[] flag;
     4     public boolean canJump(int[] A) {
     5         if(A == null || A.length == 0){
     6             return false;
     7         }
     8         T = new boolean[A.length];
     9         flag = new boolean[A.length];
    10         T[0] = true;
    11         flag[0] = true;
    12         return helper(A, A.length - 1);
    13     }
    14     private boolean helper(int[] A, int idx){
    15         if(flag[idx]){
    16             return T[idx];
    17         }
    18         boolean ret = false;
    19         for(int i = 0; i < idx; i++){
    20             if(i + A[i] >= idx){
    21                 if(helper(A, i)){
    22                     T[idx] = true;
    23                     flag[idx] = true;
    24                     return true;
    25                 }
    26             }
    27         }
    28         T[idx] = false;
    29         flag[idx] = true;
    30         return false;
    31     }
    32 }

    Solution 3. Bottom up dynamic programming, O(n^2) runtime, O(n) space.

    An equivalent iterative bottom up dp solution is implemented as follows. 

    Both solution 2 and 3 can't be optimized further more on extra space usage as calculating a subproblem

    possibly requires the results of all smaller subproblems. 

    However, runtime can be further optimized to O(n) using Greedy algorithm.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         int n = A.length;
     7         boolean f[] = new boolean[n];
     8         f[0] = true;
     9         
    10         for(int i = 1; i < n; i++){
    11             for(int j = 0; j < i; j++){
    12                 if(j + A[j] >= i){
    13                     f[i] = f[i] || f[j];                 
    14                 }
    15             }
    16             if(!f[i]){
    17                 return false;
    18             }
    19         }
    20         return true;
    21     }
    22 }

    Solution 4. Greedy Algorithm, O(n)

    Stay tuned...

    Related Problems 

    Jump Game II

    Frog Jump

  • 相关阅读:
    Android之rild进程启动源码分析
    ListView使用详解,listActivity使用方法
    打开其他android应用代码
    Android剖析和运行机制
    自定义Dialog(图片,文字说明,单选按钮)----类ListPreference实现(2)
    Internet采用哪种网络协议?该协议的主要层次结构?Internet物理地址和IP地址转换采用什么协议?
    引用与指针有什么区别?
    在C/C++中static有什么用途?
    软件验收测试包括
    自底向上集成
  • 原文地址:https://www.cnblogs.com/lz87/p/7057585.html
Copyright © 2011-2022 走看看