zoukankan      html  css  js  c++  java
  • [LintCode] Jump Game

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Determine if you are able to reach the last index.

    This problem have two method which is Greedy and Dynamic Programming.

    The time complexity of Greedy method is O(n).

    The time complexity of Dynamic Programming method is O(n^2).

    We manually set the small data set to allow you pass the test in both ways. This is just to let you learn how to use this problem in dynamic programming ways. If you finish it in dynamic programming ways, you can try greedy method to make it accept again.

    Example

    A = [2,3,1,1,4], return true.

    A = [3,2,1,0,4], return false.

    Solution 1.  Recursion without memoization 

    Recursive formula: f(n) =  true if there is at least one i (from 0 to n - 1) that satisfies i + A[i] >= n and f(i) = true.

              f(n) = false if there is no such i.

    This solution is not efficient as it does duplicate work to compute the same subproblems over and over.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         return helper(A, A.length - 1);
     7     }
     8     private boolean helper(int[] A, int idx){
     9         if(idx == 0){
    10             return true;
    11         }
    12         boolean ret = false;
    13         for(int i = 0; i < idx; i++){
    14             if(i + A[i] >= idx){
    15                 if(helper(A, i)){
    16                     return true;
    17                 }
    18             }
    19         }
    20         return false;
    21     }
    22 }

    Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space 

    The natural way of optimizing solution 1 is to avoid duplicated work by using memoization.

     1 public class Solution {
     2     private boolean[] T;
     3     private boolean[] flag;
     4     public boolean canJump(int[] A) {
     5         if(A == null || A.length == 0){
     6             return false;
     7         }
     8         T = new boolean[A.length];
     9         flag = new boolean[A.length];
    10         T[0] = true;
    11         flag[0] = true;
    12         return helper(A, A.length - 1);
    13     }
    14     private boolean helper(int[] A, int idx){
    15         if(flag[idx]){
    16             return T[idx];
    17         }
    18         boolean ret = false;
    19         for(int i = 0; i < idx; i++){
    20             if(i + A[i] >= idx){
    21                 if(helper(A, i)){
    22                     T[idx] = true;
    23                     flag[idx] = true;
    24                     return true;
    25                 }
    26             }
    27         }
    28         T[idx] = false;
    29         flag[idx] = true;
    30         return false;
    31     }
    32 }

    Solution 3. Bottom up dynamic programming, O(n^2) runtime, O(n) space.

    An equivalent iterative bottom up dp solution is implemented as follows. 

    Both solution 2 and 3 can't be optimized further more on extra space usage as calculating a subproblem

    possibly requires the results of all smaller subproblems. 

    However, runtime can be further optimized to O(n) using Greedy algorithm.

     1 public class Solution {
     2     public boolean canJump(int[] A) {
     3         if(A == null || A.length == 0){
     4             return false;
     5         }
     6         int n = A.length;
     7         boolean f[] = new boolean[n];
     8         f[0] = true;
     9         
    10         for(int i = 1; i < n; i++){
    11             for(int j = 0; j < i; j++){
    12                 if(j + A[j] >= i){
    13                     f[i] = f[i] || f[j];                 
    14                 }
    15             }
    16             if(!f[i]){
    17                 return false;
    18             }
    19         }
    20         return true;
    21     }
    22 }

    Solution 4. Greedy Algorithm, O(n)

    Stay tuned...

    Related Problems 

    Jump Game II

    Frog Jump

  • 相关阅读:
    对QR码的初步研究(附:在博客里放上博客文章的QR码)
    EonerCMS——做一个仿桌面系统的CMS(十四)
    终于病了
    【HoorayOS】开源的Web桌面应用框架(第二版 v120311)
    【HoorayOS】开源的Web桌面应用框架——EonerCMS更名为HoorayOS
    一句代码实现 HTML5 语音搜索
    HTML5 拖拽上传图片实例
    【HoorayOS】开源的Web桌面应用框架
    【HoorayOS】开源的Web桌面应用框架(文件夹功能分析)
    从源码分析常见的基于Array的数据结构动态扩容机制
  • 原文地址:https://www.cnblogs.com/lz87/p/7057585.html
Copyright © 2011-2022 走看看