zoukankan      html  css  js  c++  java
  • [Coding Made Simple] Matrix Chain Multiplication

    Given some matrices, in what order you would multiply them to minimize cost of multiplication.

     The following problem formulation is extracted from this link.

    Problem Formulation

    Note that although we can use any legal parenthesization, which will lead to a valid result. But, not all parenthesizations involve the same number of operations. To understand this point, consider the problem of a chain A1A2A3 of three matrices and suppose

    A1 be of dimension 10 × 100
    A
    2 be of dimension 100 × 5
    A
    3 be of dimension 5 × 50

    Then,

    MultCost[((A1 A2A3)] = (10 . 100 . 5) +  (10 . 5 . 50) = 7,500 scalar multiplications.

    MultCost[(A1 (A2 A3))] = (100 . 5 . 50) + (10 . 100 . 50) = 75,000 scalar multiplications.

    It is easy to see that even for this small example, computing the product according to first parenthesization is 10 times faster.

     

    The Chain Matrix Multiplication Problem

    Given a sequence of n matrices A1A2, ... An, and their dimensions p0p1p2, ..., pn, where where i = 1, 2, ..., n, matrix Ai has dimension p− 1 × pi, determine the order of multiplication that minimizes the the number of scalar multiplications.

     

    Equivalent formulation (perhaps more easy to work with!)

    Given n matrices, A1A2, ... An, where for 1 ≤ i ≤ nAi is a p− 1 × pi, matrix, parenthesize the product A1A2, ... An so as to minimize the total cost, assuming that the cost of multiplying an p− 1× pi matrix by a p× pi + 1 matrix using the naive algorithm is p− 1× p× pi + 1.

     

    Note that this algorithm does not perform the multiplications, it just figures out the best order in which to perform the multiplication operations.

     

    Solution 1. Simple recursive approach 

    The original problem can be solved by recursively solving its subproblems as follows.

    cost(i, j) is the min of cost(i, k) + cost(k + 1, j) + matrices[i].row * matrices[k].col * matrices[j].col for all k >= i && k < j.

    The base case is when i == j, the cost is 0 as it takes nothing to multipy 1 matrix.

     

    Once again the same with a lot of recursive algorithms, it has the overlapping subproblems issue.

    For example, to compute cost(0, 3), the following computations are done separately.

    cost(0, 2), cost(3, 3);

    cost(0,1), cost(2, 3);

    cost(0, 0), cost(1, 3);

    But in the process of computing cost(0,2), cost(0, 1) is computed, which is computed later in a different parenthess split. This 

    redundancy has way more presence as the input grows bigger. 

     

    Solution 2. Dynamic Programming, O(n^3) runtime, O(n^2) space 

    To avoid the redundany issue in solution 1, we should use dynamic programming.

    State: cost[i][j]: the min cost of multiplying matrices i to j.

    Function: same with the recursive formula.

     

     1 class Matrix {
     2     int row;
     3     int col;
     4     Matrix(int row, int col){
     5         this.row = row;
     6         this.col = col;
     7     }
     8 }
     9 public class Solution {
    10     public int matrixChainMultiRecursion(Matrix[] matrices) {
    11         if(matrices == null || matrices.length == 0) {
    12             return 0;
    13         }        
    14         return recursiveHelper(matrices, 0, matrices.length - 1);
    15     }
    16     private int recursiveHelper(Matrix[] matrices, int startIdx, int endIdx) {
    17         if(startIdx == endIdx){
    18             return 0;
    19         }
    20         int miniCost = Integer.MAX_VALUE;
    21         for(int i = startIdx; i < endIdx; i++){
    22             int leftCost = recursiveHelper(matrices, startIdx, i);
    23             int rightCost = recursiveHelper(matrices, i + 1, endIdx);
    24             int cost = leftCost + rightCost + matrices[startIdx].row * matrices[i].col * matrices[endIdx].col;
    25             miniCost = Math.min(cost, miniCost);
    26         }
    27         return miniCost;
    28     }
    29     public int matrixChainMultiDp(Matrix[] matrices) {
    30         if(matrices == null || matrices.length == 0) {
    31             return 0;
    32         }
    33         int[][] cost = new int[matrices.length][matrices.length];
    34         for(int i = 0; i < matrices.length; i++){
    35             int j = i;
    36             for(; j < matrices.length; j++){
    37                 cost[i][j] = Integer.MAX_VALUE;
    38             }
    39         }
    40         for(int i = 0; i < matrices.length; i++){
    41             cost[i][i] = 0;
    42         }
    43         for(int len = 2; len <= matrices.length; len++){
    44             for(int i = 0; i <= matrices.length - len; i++){
    45                 for(int j = i; j < i + len - 1; j++){
    46                     int c = cost[i][j] + cost[j + 1][i + len - 1] + matrices[i].row * matrices[j + 1].row * matrices[i + len - 1].col;
    47                     cost[i][i + len - 1] = Math.min(cost[i][i + len - 1], c);                    
    48                 }
    49             }
    50         }
    51         return cost[0][matrices.length - 1];
    52     }
    53     public static void main(String[] args) {
    54         Matrix m1 = new Matrix(2, 3);
    55         Matrix m2 = new Matrix(3, 6);
    56         Matrix m3 = new Matrix(6, 4);
    57         Matrix m4 = new Matrix(4, 5);
    58         Matrix[] matrices = {m1, m2, m3, m4};
    59         Solution sol = new Solution();
    60         System.out.println(sol.matrixChainMultiRecursion(matrices));
    61         System.out.println(sol.matrixChainMultiDp(matrices));        
    62     }
    63 }
  • 相关阅读:
    Linux常用指令整理
    结构型模式-组合模式(树形结构的处理)
    结构型模式-适配器模式(不兼容结构的协调)
    创建型模式-原型模式(对象的克隆)
    创建型模式-单例模式(确保对象唯一性)
    创建型模式-抽象工厂
    Linux之linux下安装mysql
    关于elipse中maven搭建好后,一直building workspace的问题
    idea配置数据库下载驱动
    idea配置maven以及手动添加webapp目录
  • 原文地址:https://www.cnblogs.com/lz87/p/7283009.html
Copyright © 2011-2022 走看看