zoukankan      html  css  js  c++  java
  • [Coding Made Simple] Optimal Strategy Game Pick from Ends of array

    N pots, each with some number of gold coins, are arranged in a line. You are playing a game against another player. You take turns picking a pot of gold. You may pick a pot from either end of the line, remove the pot, and keep the gold pieces. The player with the most gold at the end wins. Develop a strategy for playing this game.

    After drawing the following flow diagram, it is clear that we have overlapping subproblems such as p1 for A[1-6]. As a result, we'll use dynamic programming here.

    Solution 1. Dynamic Programming, only from player 1's perspective.

    State: T[i][j]: the max value player 1 can get when pots[i......j] are available.

    Function: T[i][j] = Max {pots[i] + Min {T[i + 2][j]},  T[i + 1][j - 1],    pots[j] + Min {T[i + 1][j - 1], T[i][j - 2]} }.   Min is used here is because player 2 is trying to play for the best strategy too.

    Init: If there is only 1 pot, pick it; If there are 2 pots, pick the one that has a bigger value.

    Answer: T[0][pots.length - 1]

     1 import java.util.ArrayList;
     2 
     3 public class OptimalGamePick {
     4     private ArrayList<Integer> picks;
     5     public int getOptimalStrategy(int[] pots) {
     6         picks = new ArrayList<Integer>();
     7         if(pots == null || pots.length == 0){
     8             return 0;
     9         }
    10         int[][] T = new int[pots.length][pots.length];
    11         for(int i = 0; i < pots.length; i++) {
    12             T[i][i] = pots[i];
    13         }
    14         for(int i = 0; i < pots.length - 1; i++) {
    15             T[i][i + 1] = Math.max(pots[i], pots[i + 1]);
    16         }
    17         for(int len = 3; len <= pots.length; len++) {
    18             for(int i = 0; i <= pots.length - len; i++) {
    19                 T[i][i + len - 1] = Math.max(pots[i] + Math.min(T[i + 2][i + len - 1], T[i + 1][i + len - 2]), 
    20                                              pots[i + len - 1] + Math.min(T[i + 1][i + len -2], T[i][i + len - 3]));
    21             }
    22         }
    23         //reconstruct player 1's picks
    24         int start = 0, end = pots.length - 1;
    25         while(end - start >= 2) {
    26             int pickFront = pots[start] + Math.min(T[start + 2][end], T[start + 1][end - 1]);
    27             int pickEnd = pots[end] + Math.min(T[start + 1][end - 1], T[start][end - 2]);
    28             if(pickFront > pickEnd) {
    29                 picks.add(start);
    30                 if(T[start + 2][end] < T[start + 1][end - 1]) {
    31                     start++;
    32                 }
    33                 else {
    34                     end--;
    35                 }
    36                 start++;
    37             }
    38             else {
    39                 picks.add(end);
    40                 if(T[start + 1][end - 1] < T[start][end - 2]) {
    41                     start++;
    42                 }
    43                 else {
    44                     end--;
    45                 }
    46                 end--;
    47             }            
    48         }
    49         if(end - start == 1) {
    50             if(pots[start] > pots[end]) {
    51                 picks.add(start);
    52             }
    53             else {
    54                 picks.add(end);
    55             }
    56         }
    57         else {
    58             picks.add(start);
    59         }
    60         return T[0][pots.length - 1]; 
    61     }
    62     public static void main(String[] args) {
    63         int[] pots = {3, 9, 1, 2};
    64         OptimalGamePick test = new OptimalGamePick();
    65         System.out.println(test.getOptimalStrategy(pots));
    66     }
    67 }

    Solution 2.  Dynamic Programming, from both player 1 and 2's perspective.

    State: T[i][j] stores the max value both players can get given pots i to j. Whoever picks first becomes player 1, so as the range of pots changes, player 1 and player 2 take turns to pick first.

    Function:  If player 1 picks pots[i], then for pots i + 1 to j he becomes player 2 as he is the second player to pick from i + 1 to j.

       T[i][j]. first = max {T[i + 1][j].second + pots[i],  T[i][j - 1].second + pots[j]};

       T[i][j].second = T[i + 1][j].first or T[i][j - 1].first, depending on which pot was picked previously by the other player.

     1 public ResultEntry getOptimalStrategy(int[] pots) {
     2     ResultEntry[][] T = new ResultEntry[pots.length][pots.length];
     3     for(int i = 0; i < T.length; i++) {
     4         for(int j = 0; j < T[0].length; j++) {
     5             T[i][j] = new ResultEntry(0, 0);
     6         }
     7     }
     8     for(int i = 0; i < T.length; i++) {
     9         T[i][i].p1 = pots[i];
    10     }
    11     for(int i = 0; i < T.length - 1; i++) {
    12         T[i][i + 1].p1 = Math.max(pots[i], pots[i + 1]);
    13         T[i][i + 1].p2 = Math.min(pots[i], pots[i + 1]);            
    14     }
    15     for(int len = 3; len <= pots.length; len++) {
    16         for(int i = 0; i <= pots.length - len; i++) {
    17             int pickFront = pots[i] + T[i + 1][i + len - 1].p2;
    18             int pickEnd = pots[i + len - 1] + T[i][i + len -2].p2;
    19             if(pickFront >= pickEnd) {
    20                 T[i][i + len - 1].p1 = pickFront;
    21                 T[i][i + len - 1].p2 = T[i + 1][i + len - 1].p1;
    22             }
    23             else {
    24                 T[i][i + len - 1].p1 = pickEnd;
    25                 T[i][i + len - 1].p2 = T[i][i + len - 2].p1;                    
    26             }
    27         }
    28     }
    29     return T[0][pots.length - 1];
    30 }
  • 相关阅读:
    php基础
    MYSQL 常用函数
    MYSQL 练习题
    MYSQL 查询
    MYSQL:增删改
    隐藏导航
    分层导航
    图片轮播!
    你帅不帅?
    PHP 流程
  • 原文地址:https://www.cnblogs.com/lz87/p/7288853.html
Copyright © 2011-2022 走看看