zoukankan      html  css  js  c++  java
  • POJ 1745 Divisibility

    Divisibility
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 9476   Accepted: 3300

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible
    #include <stdio.h>
    #include <iostream>
    using namespace std;
    
    int dp[10001][101] = {0};
    int num[10001] = {0};
    
    int main()
    {
        int k, n;
        scanf("%d%d", &n, &k);
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &num[i]);
            if (num[i] < 0)
            {
                num[i] *= -1;
            }
            num[i] = num[i] % k;
        }
        dp[0][num[0]] = 1;
        for (int i = 1; i < n; i++)
        {
            for (int j = 0; j <= k; j++)
            {
                if (dp[i - 1][j])
                {
                    dp[i][(j + num[i]) % k] = 1;
                    dp[i][(k + j - num[i]) % k] = 1;
                }
            }
        }
        if(dp[n-1][0])  
        {
            printf("Divisible
    "); 
        }
        else  
        {
            printf("Not divisible
    ");  
        }
        return 0;
    }
  • 相关阅读:
    iOS AutoLayout的用法
    UIPickerView的使用(一)
    UIPickerView的使用(二)
    logging模块
    configparser模块
    hashlib模块
    json & pickle 模块
    对表的操作
    表记录曾删改查
    库、表曾删改查和存储引擎
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3202402.html
Copyright © 2011-2022 走看看