zoukankan      html  css  js  c++  java
  • POJ 2356 Find a multiple

    Find a multiple
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4934   Accepted: 2139   Special Judge

    Description

    The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task is to choose a few of given numbers ( 1 <= few <= N ) so that the sum of chosen numbers is multiple for N (i.e. N * k = (sum of chosen numbers) for some natural number k).

    Input

    The first line of the input contains the single number N. Each of next N lines contains one number from the given set.

    Output

    In case your program decides that the target set of numbers can not be found it should print to the output the single number 0. Otherwise it should print the number of the chosen numbers in the first line followed by the chosen numbers themselves (on a separate line each) in arbitrary order. 

    If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.

    Sample Input

    5
    1
    2
    3
    4
    1
    

    Sample Output

    2
    2
    3
    题目大意:给出N 个数,在其中找出m个数,使得m个数的和是N的倍数,输出m以及任意顺序这m个数,只要输出一种情况。
    解题方法:这道题测试数据很水,直接保利搜索就可以解决。
    #include <stdio.h>
    #include <iostream>
    using namespace std;
    
    int n;
    int num[10005];
    int result[10005];
    int visted[10005];
    
    bool DFS(int nCount, int sum)
    {
        if (nCount <= n)
        {
            if (sum % n == 0 && sum != 0)
            {
                printf("%d
    ", nCount);
                for (int i = 0; i < nCount; i++)
                {
                    printf("%d
    ", result[i]);
                }
                return true;
            }
            for (int i = 0; i < n; i++)
            {
                if (!visted[i])
                {
                    result[nCount] = num[i];
                    visted[i] = 1;
                    if (DFS(nCount + 1, sum + num[i]))
                    {
                        return true;
                    }
                    visted[i] = 0;
                }
            }
        }
        return false;
    }
    
    int main()
    {
        scanf("%d", &n);
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &num[i]);
        }
        if (!DFS(0, 0))
        {
            printf("0
    ");
        }
        return 0;
    }
  • 相关阅读:
    【bzoj4372】烁烁的游戏 动态点分治+线段树
    【bzoj3730】震波 动态点分治+线段树
    【bzoj3125】CITY 插头dp
    【bzoj2310】ParkII 插头dp
    【bzoj1187】[HNOI2007]神奇游乐园 插头dp
    【bzoj1814】Ural 1519 Formula 1 插头dp
    【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
    【bzoj3518】点组计数 欧拉函数(欧拉反演)
    【bzoj5099】[POI2018]Pionek 双指针法
    【bzoj4311】向量 线段树对时间分治+STL-vector维护凸包
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3234317.html
Copyright © 2011-2022 走看看