zoukankan      html  css  js  c++  java
  • POJ 2385 Apple Catching

    Apple Catching
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6350   Accepted: 3077

    Description

    It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds. 

    Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples). 

    Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

    Input

    * Line 1: Two space separated integers: T and W 

    * Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

    Output

    * Line 1: The maximum number of apples Bessie can catch without walking more than W times.

    Sample Input

    7 2
    2
    1
    1
    2
    2
    1
    1

    Sample Output

    6
    题目大意:一共有 2 棵苹果树,一头奶牛站在其中一棵苹果树下等待苹果落下,由于任意一个时刻只能站在一棵树下,它从一棵树移动到另外一棵树的时间不计,奶牛不愿意太频繁移动,现在给定苹果的下落次序和最大移动次数,问奶牛最多可以抓住几个苹果。
    #include <stdio.h>
    #include <iostream>
    using namespace std;
    
    int num[1005];
    int dp[1005][35][2];
    
    int main()
    {
    
        int n, times, maxsum = -1;
        scanf("%d%d", &n, &times);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &num[i]);
        }
        for (int i = 1; i <= n; i++)
        {
            dp[i][0][0] = dp[i - 1][0][0] + (num[i] == 1);
            dp[i][0][1] = dp[i - 1][0][1] + (num[i] == 2);
            for (int j = 1; j <= times; j++)
            {
                dp[i][j][0] = max(dp[i - 1][j - 1][1], dp[i - 1][j][0]) + (num[i] == 1);
                dp[i][j][1] = max(dp[i - 1][j - 1][0], dp[i - 1][j][1]) + (num[i] == 2);
                maxsum = max(maxsum, max(dp[i][j][0], dp[i][j][1]));
            }
        }
        printf("%d
    ", maxsum);
        return 0;
    }
  • 相关阅读:
    *VC编程规范
    C++的va_start() va_end()函数应用(转)
    * C++类的分解,抽象类与纯虚函数的需要性
    *C++中的回调
    *C++中使用接口
    C++模版使用
    *获取mac地址的方法
    *数字——字符之间的转换(转)
    eclipse雕虫小技一:eclipse打开文件目录
    Hibernate升级后注解方式的对象关系映射
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3234630.html
Copyright © 2011-2022 走看看