zoukankan      html  css  js  c++  java
  • HDU 3999 The order of a Tree

    The order of a Tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 845    Accepted Submission(s): 461


    Problem Description
    As we know,the shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
    1.  insert a key k to a empty tree, then the tree become a tree with
    only one node;
    2.  insert a key k to a nonempty tree, if k is less than the root ,insert
    it to the left sub-tree;else insert k to the right sub-tree.
    We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate the same tree.Two trees are the same if and only if they have the same shape.
     
    Input
    There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
     
    Output
    One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
     
    Sample Input
    4 1 3 4 2
     
    Sample Output
    1 3 2 4
    题目大意:简历一颗二叉排序树,然后先序遍历。
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <stack>
    using namespace std;
    
    typedef struct node
    {
        int data;
        node *lchild;
        node *rchild;
        node()
        {
            lchild = rchild = NULL;
        }
    }TreeNode;
    
    void CreateTree(TreeNode *&pRoot, int data)
    {
        if (pRoot == NULL)
        {
            pRoot = new TreeNode;
            pRoot->data = data;
        }
        else
        {
            if (data > pRoot->data)
            {
                CreateTree(pRoot->rchild, data);
            }
            else
            {
                CreateTree(pRoot->lchild, data);
            }
        }
    }
    
    void PreOrder(TreeNode *pRoot)
    {
        int nCount = 0;
        if (pRoot == NULL)
        {
            return;
        }
        stack<TreeNode*> Stack;
        Stack.push(pRoot);
        do 
        {
            TreeNode *p = Stack.top();
            Stack.pop();
            if (nCount == 0)
            {
                printf("%d", p->data);
                nCount++;
            }
            else
            {
                printf(" %d", p->data);
                nCount++;
            }
            if (p->rchild != NULL)
            {
                Stack.push(p->rchild);
            }
            if (p->lchild != NULL)
            {
                Stack.push(p->lchild);
            }
    
        } while (!Stack.empty());
    }
    
    int main()
    {
        int n, num;
        scanf("%d", &n);
        TreeNode *pRoot = NULL;
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &num);
            CreateTree(pRoot, num);
        }
        PreOrder(pRoot);
        printf("
    ");
        return 0;
    }
  • 相关阅读:
    C#无限分级实现,前端WEB页面接收,后台提供层级Json数据
    消息队列、OSS常用操作封装
    ABP增删改查代码片段
    WebApi实现验证授权Token,WebApi生成文档等
    项目收集-AutoMapper使用,事务,Json.Net序列化反序列化,代码生成调用等
    ssi服务器端指令详解(shtml)
    Linq常用List操作总结,ForEach、分页、交并集、去重、SelectMany等
    81.Search in Rotated Sorted Array II---二分变形
    48.Rotate Image
    89.Gray Code
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3259704.html
Copyright © 2011-2022 走看看