zoukankan      html  css  js  c++  java
  • HDU 3999 The order of a Tree

    The order of a Tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 845    Accepted Submission(s): 461


    Problem Description
    As we know,the shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
    1.  insert a key k to a empty tree, then the tree become a tree with
    only one node;
    2.  insert a key k to a nonempty tree, if k is less than the root ,insert
    it to the left sub-tree;else insert k to the right sub-tree.
    We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate the same tree.Two trees are the same if and only if they have the same shape.
     
    Input
    There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
     
    Output
    One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
     
    Sample Input
    4 1 3 4 2
     
    Sample Output
    1 3 2 4
    题目大意:简历一颗二叉排序树,然后先序遍历。
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <stack>
    using namespace std;
    
    typedef struct node
    {
        int data;
        node *lchild;
        node *rchild;
        node()
        {
            lchild = rchild = NULL;
        }
    }TreeNode;
    
    void CreateTree(TreeNode *&pRoot, int data)
    {
        if (pRoot == NULL)
        {
            pRoot = new TreeNode;
            pRoot->data = data;
        }
        else
        {
            if (data > pRoot->data)
            {
                CreateTree(pRoot->rchild, data);
            }
            else
            {
                CreateTree(pRoot->lchild, data);
            }
        }
    }
    
    void PreOrder(TreeNode *pRoot)
    {
        int nCount = 0;
        if (pRoot == NULL)
        {
            return;
        }
        stack<TreeNode*> Stack;
        Stack.push(pRoot);
        do 
        {
            TreeNode *p = Stack.top();
            Stack.pop();
            if (nCount == 0)
            {
                printf("%d", p->data);
                nCount++;
            }
            else
            {
                printf(" %d", p->data);
                nCount++;
            }
            if (p->rchild != NULL)
            {
                Stack.push(p->rchild);
            }
            if (p->lchild != NULL)
            {
                Stack.push(p->lchild);
            }
    
        } while (!Stack.empty());
    }
    
    int main()
    {
        int n, num;
        scanf("%d", &n);
        TreeNode *pRoot = NULL;
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &num);
            CreateTree(pRoot, num);
        }
        PreOrder(pRoot);
        printf("
    ");
        return 0;
    }
  • 相关阅读:
    如何定时备份Mysql数据库
    Mysql如何分析慢查询及优化(一)--- EXPLAIN详解
    Mysql如何分析慢查询日志--MysqlDumpSlow详解
    Mysql添加用户及用户权限管理
    Mysql表的横向拆分与纵向拆分及简单案例
    Mysql触发器详解以及简单的案例
    Mysql存储过程详解及案例
    Mysql中如何查看线程
    Nginx命令与配置详解
    SQLSERVER 2008 技术内幕 T-SQL查询 笔记1: SQL 执行顺序
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3259704.html
Copyright © 2011-2022 走看看