4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 13069 | Accepted: 3669 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题目大意:输入n 表示a b c d 四个集合都有n个元素之后每行输入4个集合中的一个元素,求这四个集合每个集合中拿出一个数 相加等于0的组数。
解题方法:哈希表开放定址法。
#include <cstring> #include <string> #include <cstdio> #include <algorithm> #include <queue> #include <cmath> #include <vector> #include <cstdlib> #include <iostream> using namespace std; #define MAX_VAL 20000000 typedef struct { int nCount; int x; }Hash; Hash HashTable[MAX_VAL]; int a[4005], b[4005], c[4005], d[4005]; void InsertHT(int n) { int addr = n % MAX_VAL; if (addr < 0) { addr += MAX_VAL; } while(HashTable[addr].nCount != 0 && HashTable[addr].x != n) { addr = (addr + 1) % MAX_VAL; } HashTable[addr].nCount++; HashTable[addr].x = n; } int SearchHT(int n) { int addr = n % MAX_VAL; if (addr < 0) { addr += MAX_VAL; } while (HashTable[addr].nCount != 0 && HashTable[addr].x != n) { addr = (addr + 1) % MAX_VAL; } return HashTable[addr].nCount; } int main() { int n, ans = 0; scanf("%d", &n); memset(HashTable, 0, sizeof(HashTable)); for (int i = 0; i < n; i++) { scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]); } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { InsertHT(a[i] + b[j]); } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { ans += SearchHT(-c[i] - d[j]); } } printf("%d ", ans); return 0; }