zoukankan      html  css  js  c++  java
  • POJ 1915 Knight Moves

    POJ 1915 Knight Moves

    Knight Moves

    Time Limit: 1000MS Memory Limit: 30000K
    Total Submissions: 29906 Accepted: 14054

    Description

    Background
    Mr Somurolov, fabulous chess-gamer indeed, asserts that no one else but him can move knights from one position to another so fast. Can you beat him?
    The Problem
    Your task is to write a program to calculate the minimum number of moves needed for a knight to reach one point from another, so that you have the chance to be faster than Somurolov.
    For people not familiar with chess, the possible knight moves are shown in Figure 1.

    Input

    The input begins with the number n of scenarios on a single line by itself.
    Next follow n scenarios. Each scenario consists of three lines containing integer numbers. The first line specifies the length l of a side of the chess board (4 <= l <= 300). The entire board has size l * l. The second and third line contain pair of integers {0, ..., l-1}*{0, ..., l-1} specifying the starting and ending position of the knight on the board. The integers are separated by a single blank. You can assume that the positions are valid positions on the chess board of that scenario.

    Output

    For each scenario of the input you have to calculate the minimal amount of knight moves which are necessary to move from the starting point to the ending point. If starting point and ending point are equal,distance is zero. The distance must be written on a single line.

    Sample Input

    3
    8
    0 0
    7 0
    100
    0 0
    30 50
    10
    1 1
    1 1

    Sample Output

    5
    28
    0

    Source

    TUD Programming Contest 2001, Darmstadt, Germany


    这题算是比较简单的BFS了,但数据较大,普通的BFS会超时,但用双向BFS就没有这个问题。

    双向BFS

    双向BFS的原理是起点和终点同时扩展节点,当遇到相同的节点时,记录答案退出。双向BFS减少了节点的扩展,效率比普通的BFS高出几倍,且内存开销小,是NOIP必备的技能。

    code

    #include <cstring>
    #include <cstdio>
    #include <queue>
    using namespace std;
    
    int read()
    {
    	int x=0,f=1;char c=getchar();
    	while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
    	while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
    	return x*f;
    }
    
    const int MAXN=310;
    const int dx[]={0,1,1,-1,-1,2,2,-2,-2};
    const int dy[]={0,2,-2,2,-2,1,-1,1,-1};
    int n,ans;
    bool flag;
    
    struct dot
    {
    	int x,y,step;
    	void in()
    	{
    		x=read();y=read();
    		step=0;
    	}
    	
    	bool operator == (struct dot tmp)
    	{
    		if (x==tmp.x && y==tmp.y)return true;
    		return false;
    	}
    }Start,End;
    int step[MAXN][MAXN];
    bool vis[2][MAXN][MAXN];
    queue<dot> Q[2];
    
    bool ok(int x,int y)
    {
    	if (x<0 || x>=n)return false;
    	if (y<0 || y>=n)return false;
    	return true;
    }
    
    void get_next(int z)
    {
    	struct dot top,tmp;
    	top=Q[z].front();Q[z].pop();
    	for (int i=1;i<=8;i++)
    	{
    		tmp.step=top.step+1;
    		tmp.x=top.x+dx[i];
    		tmp.y=top.y+dy[i];
    		if (!ok(tmp.x,tmp.y))continue;
    		if (vis[1-z][tmp.x][tmp.y])
    		{
    			ans=tmp.step+step[tmp.x][tmp.y];
    			flag=true;
    			return ;
    		}
    		if (!vis[z][tmp.x][tmp.y])
    		{
    			vis[z][tmp.x][tmp.y]=true;
    			Q[z].push(tmp);
    			step[tmp.x][tmp.y]=tmp.step;
    		}
    	}
    }
    
    void bfs()
    {
    	while (!Q[0].empty())Q[0].pop();
    	while (!Q[1].empty())Q[1].pop();
    	Q[0].push(Start);Q[1].push(End);
    	while (!Q[0].empty()||!Q[1].empty())
    	{
    		if (Q[0].front()==End)
    		{
    			ans=Q[0].front().step;
    			return ;
    		}
    		if (!Q[0].empty()&&Q[0].size()<Q[1].size())get_next(0);
    		else get_next(1);
    		if (flag)return ;
    	}
    }
    
    int main()
    {
    	int cas;cas=read();
    	while (cas--)
    	{
    		flag=0;
    		memset(step,0,sizeof(step));
    		memset(vis,0,sizeof(vis));
    		n=read();
    		Start.in();End.in();
    		vis[0][Start.x][Start.y]=1;
    		vis[1][End.x][End.y]=1;
    		bfs();
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    

    双向BFS的优化

    双向BFS效率是惊人的如果运用的好,效率将会更高

    让我们来分析一下,当出现一边节点特别多时,扩展节点多的一边会使节点数成指数倍增长,最终导致效率退化到单向BFS,所以我的程序便用了一个if语句,使两个BFS中的节点尽量平衡。

    PS:其实这题并不需要这样判断,数据规模和节点的扩展都使得两边会差不多平衡。但这也不失是一种好的优化技巧。

    点个赞吧

  • 相关阅读:
    osgEarath中elevation的tms切片写法
    3D数据格式
    osgearth调试源码无法打断点问题解决
    在软件中无法选择已经安装字体的解决方案
    [vb+mo] visual baisc 6.0 基于mapobjects 2.4 开发的数字化校园电子地图
    编译osg的vrml插件
    安全漏洞之grafanacve_2021_43798
    apk反编译工具dex2jar
    磁盘空间告急
    WEB漏洞扫描工具之OWASP ZAP
  • 原文地址:https://www.cnblogs.com/lzxzy-blog/p/10460174.html
Copyright © 2011-2022 走看看