Relational DB | Elasticsearch |
---|---|
数据库(database) | 索引(indices) |
表(tables) | types |
行(rows) | documents |
字段(columns) | fields |
库表行字段,index,type,id,fields, 索引类型文档字段
创建一篇文档
PUT t1/doc/1 { "name": "小黑的小姨妈", "age": 18 }
index/type/id id是单个文档
查询所有索引
GET _cat/indices?v
查询指定的索引信息
GET t1
查询文档信息
GET t1/doc/1 #查询指定文档
GET t1/doc/_search #查询所有文档
删除指定索引
DELETE /t1
修改文档
PUT zhifou/doc/1 { "name":"顾老二", "age":30, "from": "gu", "desc": "皮肤黑、武器长、性格直", "tags": ["黑", "长", "直"] } 我们要将黑修改成黄: POST zhifou/doc/1/_update { "doc": { "desc": "皮肤很黄,武器很长,性格很直", "tags": ["很黄","很长", "很直"] } }
查询字符串
方式一: GET zhifou/doc/_search?q=from:gu 属性是from,属性值是gu的文档 方式二: GET zhifou/doc/_search { "query": { "match": { "from": "gu" } } }
match条件查询,查询含有(匹配)指定字段值的文档
我们查看来自顾家的都有哪些人
GET zhifou/doc/_search { "query": { "match": { "from": "gu" } } }
match查询全部文档
查询zhifou
索引下的doc
类型中的所有文档,那就是查询全部
GET zhifou/doc/_search { "query": { "match_all": {} } }
match_phrase(短语查询)
GET t1/doc/_search { "query": { "match_phrase": { "title": { "query": "中国" } } } } title字段中包含短语中国 GET t1/doc/_search { "query": { "match_phrase": { "title": { "query": "中国世界", "slop": 2 } } } } slop了。相当于正则中的中国.*?世界。这个间隔默认为0,指定短语间隔
match_phrase_prefix(最左前缀查询)
GET t3/doc/_search { "query": { "match_phrase_prefix": { "desc": "bea" } } } desc字段bea开头字 GET t3/doc/_search { "query": { "match_phrase_prefix": { "desc": { "query": "bea", "max_expansions": 1 } } } } max_expansions来设置最大的前缀扩展数量
multi_match(多字段查询)
方法一: GET t3/doc/_search { "query": { "bool": { "must": [ { "match": { "title": "beautiful" } }, { "match": { "desc": "beautiful" } } ] } } } 方法二: GET t3/doc/_search { "query": { "multi_match": { "query": "beautiful", "fields": ["title", "desc"] } } } multi_match甚至可以当做match_phrase和match_phrase_prefix使用,只需要指定type类型即可: GET t3/doc/_search { "query": { "multi_match": { "query": "gi", "fields": ["title"], "type": "phrase_prefix" } } } GET t3/doc/_search { "query": { "multi_match": { "query": "girl", "fields": ["title"], "type": "phrase" } } }
term查询#单个匹配项
POST _analyze { "analyzer": "standard", "text": "Beautiful girl!" } # 结果 ["beautiful", "girl"] GET w10/doc/_search { "query": { "term": { "t1": "beautiful" } } }
terms查询#多个匹配项
GET w10/doc/_search { "query": { "terms": { "t1": ["beautiful", "sexy"] } } }
排序查询:sort#按某个字段降序查询
查询顾府都有哪些人,并根据age字段按照降序
GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "sort": [ { "age": { "order": "desc" } } ] }
按某个字段升序查询
GET zhifou/doc/_search { "query": { "match_all": {} }, "sort": [ { "age": { "order": "asc" } } ] }
分页查询:from/size#
GET zhifou/doc/_search { "query": { "match_all": {} }, "sort": [ { "age": { "order": "desc" } } ], "from": 2, "size": 1 } from:从哪开始查 size:返回几条结果
bool查询must#(and)
单个条件查询:布尔查询所有from属性为gu的数据: GET zhifou/doc/_search { "query": { "bool": { "must": [ { "match": { "from": "gu" } } ] } } } 多个条件查询:想要查询from为gu,并且age为30的数据 GET zhifou/doc/_search { "query": { "bool": { "must": [ { "match": { "from": "gu" } }, { "match": { "age": 30 } } ] } } }
bool查询should(or)
查询只要是from为gu或者tags为闭月的数据 GET zhifou/doc/_search { "query": { "bool": { "should": [ { "match": { "from": "gu" } }, { "match": { "tags": "闭月" } } ] } } }
bool查询must_not(not)
查询from既不是gu并且tags也不是可爱,还有age不是18的数据 GET zhifou/doc/_search { "query": { "bool": { "must_not": [ { "match": { "from": "gu" } }, { "match": { "tags": "可爱" } }, { "match": { "age": 18 } } ] } } }
bool查询filter
查询from为gu,age大于25的数据 。比较符号有gt gte lt lte GET zhifou/doc/_search { "query": { "bool": { "must": [ { "match": { "from": "gu" } } ], "filter": { "range": { "age": { "gt": 25 } } } } } } 查询from是gu,age在25~30之间 GET zhifou/doc/_search { "query": { "bool": { "must": [ { "match": { "from": "gu" } } ], "filter": { "range": { "age": { "gte": 25, "lte": 30 } } } } } } must改成should,满足下面的filter但不满足上面的match也会显示出来 GET zhifou/doc/_search { "query": { "bool": { "should": [ { "match": { "from": "sheng" } } ], "filter": { "range": { "age": { "lte": 25 } } } } } }
must
:与关系,相当于关系型数据库中的and
。should
:或关系,相当于关系型数据库中的or
。must_not
:非关系,相当于关系型数据库中的not
。filter
:过滤条件。range
:条件筛选范围。gt
:大于,相当于关系型数据库中的>
。gte
:大于等于,相当于关系型数据库中的>=
。lt
:小于,相当于关系型数据库中的<
。lte
:小于等于,相当于关系型数据库中的<=
。
结果过滤:_source
在所有的结果中,我只需要查看name和age两个属性,其他的不要 GET zhifou/doc/_search { "query": { "match": { "name": "顾老二" } }, "_source": ["name", "age"] }
avg
查询from是gu的人的平均年龄 GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "aggs": { "my_avg": { "avg": { "field": "age" } } }, "_source": ["name", "age"] } 首先匹配查询from是gu的数据。在此基础上做查询平均值的操作,这里就用到了聚合函数,其语法被封装在aggs中,而my_avg则是为查询结果起个别名,封装了计算出的平均值。那么,要以什么属性作为条件呢?是age年龄,查年龄的什么呢?是avg,查平均年龄。 只想看平均值 GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "aggs": { "my_avg": { "avg": { "field": "age" } } }, "size": 0, "_source": ["name", "age"] }
max
GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "aggs": { "my_max": { "max": { "field": "age" } } }, "size": 0 }
min
GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "aggs": { "my_min": { "min": { "field": "age" } } }, "size": 0 }
sum
GET zhifou/doc/_search { "query": { "match": { "from": "gu" } }, "aggs": { "my_sum": { "sum": { "field": "age" } } }, "size": 0 }
分组查询和分组聚合
查询所有人的年龄段,并且按照15~20,20~25,25~30分组, GET zhifou/doc/_search { "size": 0, "query": { "match_all": {} }, "aggs": { "age_group": { "range": { "field": "age", "ranges": [ { "from": 15, "to": 20 }, { "from": 20, "to": 25 }, { "from": 25, "to": 30 } ] } } } } 查询所有人的年龄段,并且按照15~20,20~25,25~30分组,并且算出每组的平均年龄。每个小组内的数据做平均年龄处理。 GET zhifou/doc/_search { "size": 0, "query": { "match_all": {} }, "aggs": { "age_group": { "range": { "field": "age", "ranges": [ { "from": 15, "to": 20 }, { "from": 20, "to": 25 }, { "from": 25, "to": 30 } ] }, "aggs": { "my_avg": { "avg": { "field": "age" } } } } } }