zoukankan      html  css  js  c++  java
  • 数论基础

    扩展欧几里得

    hdu2669, 解同余方程 ax+by=1

     1 int gcd(int a, int b, int& x, int& y)
     2 {
     3     if(b == 0){
     4         x = 1;
     5         y = 0;
     6         return a;
     7     }
     8     else{
     9         int temp = gcd(b, a % b, x, y);
    10         int t = y;
    11         y = x - y * (a / b);
    12         x = t;
    13         return temp;
    14     }
    15 }

    费马小定理 gcd(a,p)=1,那么 a^(p-1) ≡1(mod p)

    hdu4828,费马小定理计算卡特兰数

     1 #include <iostream>
     2 #include <cstdio>
     3 #define MAXN 2000001
     4 #define MOD 1000000007
     5 using namespace std;
     6 
     7 long long f[MAXN + 5];
     8 long long gcd(long long a, long long b, long long& x, long long& y)
     9 {
    10     if(b == 0){
    11         x = 1;
    12         y = 0;
    13         return a;
    14     }
    15     else{
    16         long long temp = gcd(b, a % b, x, y);
    17         long long t = y;
    18         y = x - y * (a / b);
    19         x = t;
    20         return temp;
    21     }
    22 }
    23 
    24 int main()
    25 {
    26     f[1] = 1;
    27     for(long long i = 2; i <= MAXN; i++){
    28         f[i] = (f[i - 1] * (4 * i - 2)) % MOD;
    29         gcd(i + 1, MOD, x, y);
    30         if(x < 0){
    31             x = MOD - (-x) % MOD;
    32         }
    33         x = x % MOD;
    34         f[i] = (f[i] * x) % MOD;
    35     }

    中国剩余定理

    hdu1573,不互素的中国剩余定理

     1 #include <iostream>
     2 #include <cstdio>
     3 #define M 11
     4 using namespace std;
     5 
     6 long long a[M], b[M];
     7 long long x, y;
     8 bool flag;
     9 long long gcd(long long  a, long long  b)
    10 {
    11     if (b == 0){
    12         return a;
    13     }
    14     return gcd(b, a % b);
    15 }
    16 
    17 long long exgcd(long long  a, long long  b, long long & x, long long & y)
    18 {
    19     if (b == 0){
    20         x = 1;
    21         y = 0;
    22         return a;
    23     }
    24     else{
    25         long long  temp = exgcd(b, a % b, x, y);
    26         long long  t = y;
    27         y = x - y * (a / b);
    28         x = t;
    29         return temp;
    30     }
    31 }
    32 int main()
    33 {
    34     long long  T, d, n, m, t, A, B;
    35     scanf("%I64d", &T);
    36     for (int cas = 1; cas <= T; cas++){
    37         flag = false;
    38         scanf("%I64d%I64d", &n, &m);
    39         for (int i = 1; i <= m; i++){
    40             scanf("%d", &a[i]);
    41             //t = (t * a[i]) / gcd(t, a[i]);
    42         }
    43         for (int i = 1; i <= m; i++){
    44             scanf("%I64d", &b[i]);
    45         }
    46         A = a[1], B = b[1];
    47         for (int i = 2; i <= m; i++){
    48             d = exgcd(A, a[i], x, y);
    49             if ((b[i] - B) % d != 0){
    50                 flag = true;
    51                 break;
    52             }
    53             x = (b[i] - B) / d * x;
    54             y = a[i] / d;
    55             x = (x % y + y) % y;
    56             B = x * A + B;
    57             A = (A * a[i]) / d;
    58             B = (B % A + A) % A;
    59         }
    60         if (B > n || flag){
    61             printf("0
    ");
    62         }
    63         else{
    64             t = 1 + (n - B) / A;
    65             if (B == 0){
    66                 --t;
    67             }
    68             printf("%I64d
    ", t);
    69         }
    70     }
    71 }

    欧拉函数

    求1-n与n互质的个数

     1 int euler(int x){
     2      int ans = x, m = n;
     3      for(int i = 2; i * i <= x; i++){
     4          if(x % i == 0){
     5              ans = ans / i * (i - 1);
     6              while(x % i == 0){
     7                     x /= i;
     8              }
     9          }
    10      }
    11      if(x > 1){
    12             ans = ans / x * (x - 1);
    13      }
    14      return ans;
    15 }

    指数循环节 

      

  • 相关阅读:
    数据库被挂马3
    將目標網址轉換成HTML
    四步堵死3b3.org c.js注入
    GBK与UTF8编码选择与区分
    C#连Oracle数据库
    Session过期时间的四种设置方式
    怎么从内容页访问母板页
    Response.Charset与Response.ContentEncoding的区别
    CommandBehavior.CloseConnection的使用
    尽可能的使用强类型
  • 原文地址:https://www.cnblogs.com/macinchang/p/4547565.html
Copyright © 2011-2022 走看看