http://www.lydsy.com/JudgeOnline/problem.php?id=2006
静态区间第K大。
先求A的前缀和sum[i],区间[l,r]其实就是sum[r]-sum[l-1]。
对于确定的r,要想sum[r]-sum[l-1]最大,就是要sum[l-1]最小。
对于一个确定的右端点r,其左端点满足r-R+1<=l<=r-L+1。
那么以r为右端点的长度在L到R之间的区间的最大值为sum[r]-sum[r-R...r-L]中最小值,第二大值为sum[r]-sum[r-R...r-L]中的第二小值......第K大值就是sum[r]-sum[r-R...r-L]的第K小值。
所以变成询问区间sum[r-R...r-L]中的第K大值。
我们用可持久化线段树维护。
首先从1到N枚举r,求出以r为右端点的长度在L到R之间的区间的最大值,然后将这N个最大值放在一个优先队列里。
然后取出优先队列的最大值区间,记这个区间的右端点为r,求出求出以r为右端点的长度在L到R之间的区间的第二大值,再放到优先队列中。
这样做K次就行了。
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #include<string> #include<cmath> #include<queue> #include<stack> #include<map> #include<utility> #include<set> #include<bitset> #include<vector> #include<functional> #include<deque> #include<cctype> #include<climits> #include<complex> //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj using namespace std; typedef long long LL; typedef double DB; typedef pair<int,int> PII; typedef complex<DB> CP; #define mmst(a,v) memset(a,v,sizeof(a)) #define mmcy(a,b) memcpy(a,b,sizeof(a)) #define re(i,a,b) for(i=a;i<=b;i++) #define red(i,a,b) for(i=a;i>=b;i--) #define fi first #define se second #define m_p(a,b) make_pair(a,b) #define SF scanf #define PF printf #define two(k) (1<<(k)) template<class T>inline T sqr(T x){return x*x;} template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;} template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;} const DB EPS=1e-9; inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;} const DB Pi=acos(-1.0); inline int gint() { int res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } inline LL gll() { LL res=0;bool neg=0;char z; for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar()); if(z==EOF)return 0; if(z=='-'){neg=1;z=getchar();} for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar()); return (neg)?-res:res; } const int maxN=500000; const int maxK=500000; int N,K,L,R; int A[maxN+100]; LL sum[maxN+100]; LL ans; int cnt; LL bak[maxN+100]; struct Ttree { int l,r,sum; inline Ttree(){l=r=sum=0;} }tree[13000000]; int MID=0; int root[maxN+100]; inline int New_Node(){tree[++MID]=Ttree();return MID;} inline void up(int rt){tree[rt].sum=tree[tree[rt].l].sum+tree[tree[rt].r].sum;} inline void update(int &rt,int pastrt,int l,int r,int x) { if(l>r || x<l || r<x) return; if(rt==0)rt=New_Node(); if(x<=l && r<=x){tree[rt].sum=tree[pastrt].sum+1;return;} int mid=(l+r)/2; if(x<=mid) { if(tree[rt].r==0) tree[rt].r=tree[pastrt].r; update(tree[rt].l,tree[pastrt].l,l,mid,x); } else { if(tree[rt].l==0) tree[rt].l=tree[pastrt].l; update(tree[rt].r,tree[pastrt].r,mid+1,r,x); } up(rt); } inline int lsum(int rt){return tree[tree[rt].l].sum;} inline LL ask(int x,int y,int k) { int l=1,r=cnt,rt1=(x==0)?0:root[x-1],rt2=root[y]; while(l!=r) { int lge=lsum(rt2)-lsum(rt1),mid=(l+r)/2; if(k<=lge) {r=mid;rt1=tree[rt1].l;rt2=tree[rt2].l;} else {l=mid+1;k-=lge;rt1=tree[rt1].r;rt2=tree[rt2].r;} } return bak[l]; } inline void build() { int i; cnt=0; re(i,0,N)bak[++cnt]=sum[i]; sort(bak+1,bak+cnt+1); cnt=unique(bak+1,bak+cnt+1)-bak-1; re(i,0,N)sum[i]=lower_bound(bak+1,bak+cnt+1,sum[i])-bak; root[0]=New_Node(); update(root[0],0,1,cnt,sum[0]); re(i,1,N) { root[i]=New_Node(); update(root[i],root[i-1],1,cnt,sum[i]); } } int l[maxN+100],r[maxN+100],h[maxN+100]; struct Tdata { int pos;LL v; inline Tdata(int _pos=0,LL _v=0){pos=_pos;v=_v;} }; struct cmp{inline bool operator ()(Tdata a,Tdata b){return a.v<b.v;}}; priority_queue<Tdata,vector<Tdata>,cmp>Q; int main() { freopen("piano.in","r",stdin); freopen("piano.out","w",stdout); int i; N=gint();K=gint();L=gint();R=gint(); re(i,1,N)A[i]=gint(); re(i,1,N)sum[i]=sum[i-1]+LL(A[i]); build(); re(i,1,N) { l[i]=max(0,i-R); r[i]=i-L; h[i]=0; if(l[i]<=r[i] && h[i]+1<=r[i]-l[i]+1) Q.push(Tdata(i,bak[sum[i]]-ask(l[i],r[i],++h[i]))); } while(K--) { int pos=Q.top().pos,v=Q.top().v;Q.pop(); ans+=v; if(l[pos]<=r[pos] && h[pos]+1<=r[pos]-l[pos]+1) Q.push(Tdata(pos,bak[sum[pos]]-ask(l[pos],r[pos],++h[pos]))); } cout<<ans<<endl; return 0; }