zoukankan      html  css  js  c++  java
  • bzoj4006[JLOI2015]管道连接

    http://www.lydsy.com/JudgeOnline/problem.php?id=4006

    斯坦纳树。

    一共有P个关键点:我们用一个P位二进制数表示是否包含这些关键点。

    F[i][state]表示一定包含i点,至少包含关键点state的生成树的最小费用,其中state是一个二进制数。

    有2个转移:

    F[i][state]=min{F[i][s]+F[i][state-s]}(其中s是state的子集)

    F[i][state]=min{F[j][state]+cost}(其中i号点和j号点有边相连,费用为cost)

    我们按state划分阶段,相同的state做SPFA。

    现在我们已经求出F了。

    记DP[state]表示至少包含关键点state时的生成树的最小费用,其实就是DP[state]=min{F[i][state]}(1<=i<=N)

    我们还要判断state是否合法,就是对于如果某种频道出现在state中,那么包含这种频道的所有点都必须在state中。

    但是现在DP[state]表示的还只是一棵生成树。

    答案可以是森林。

    我们可以从state的子集更新:DP[state]=min{DP[state],DP[s]+DP[state-s]}(其中s是state的子集)

    这样就变成了森林了。

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<fstream>
    #include<algorithm>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<map>
    #include<utility>
    #include<set>
    #include<bitset>
    #include<vector>
    #include<functional>
    #include<deque>
    #include<cctype>
    #include<climits>
    #include<complex>
    //#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj
     
    using namespace std;
    
    typedef long long LL;
    typedef double DB;
    typedef pair<int,int> PII;
    typedef complex<DB> CP;
    
    #define mmst(a,v) memset(a,v,sizeof(a))
    #define mmcy(a,b) memcpy(a,b,sizeof(a))
    #define re(i,a,b)  for(i=(a);i<=(b);i++)
    #define red(i,a,b) for(i=(a);i>=(b);i--)
    #define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
    #define fi first
    #define se second
    #define m_p(a,b) make_pair(a,b)
    #define p_b(a) push_back(a)
    #define SF scanf
    #define PF printf
    #define two(k) (1<<(k))
    
    template<class T>inline T sqr(T x){return x*x;}
    template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
    template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;}
    
    const DB EPS=1e-9;
    inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;}
    const DB Pi=acos(-1.0);
    
    inline int gint()
      {
            int res=0;bool neg=0;char z;
            for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
            if(z==EOF)return 0;
            if(z=='-'){neg=1;z=getchar();}
            for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar());
            return (neg)?-res:res; 
        }
    inline LL gll()
      {
          LL res=0;bool neg=0;char z;
            for(z=getchar();z!=EOF && z!='-' && !isdigit(z);z=getchar());
            if(z==EOF)return 0;
            if(z=='-'){neg=1;z=getchar();}
            for(;z!=EOF && isdigit(z);res=res*10+z-'0',z=getchar());
            return (neg)?-res:res; 
        }
    
    const int maxN=1000;
    const int maxM=3000;
    const int maxP=10;
    const int INF=0x3f3f3f3f;
    
    int N,M,P;
    int now,first[maxN+100];
    struct Tedge{int v,next,cost;}edge[2*maxM+100];
    
    inline void addedge(int u,int v,int cost)
      {
          now++;
          edge[now].v=v;
            edge[now].cost=cost;
          edge[now].next=first[u];
          first[u]=now;
      }
    
    int bit[maxN+100];
    int val[maxP+10];
    int F[maxN+100][two(maxP)+10];
    int vis[maxN+100][two(maxP)+10];
    
    queue<PII>Q;
    inline void SPFA()
      {
          while(!Q.empty())
            {
                int u=Q.front().fi,state=Q.front().se,i,v,cost;Q.pop();
                vis[u][state]=0;
                for(i=first[u],v=edge[i].v,cost=edge[i].cost;i!=-1;i=edge[i].next,v=edge[i].v,cost=edge[i].cost)
                  if(F[u][state]+cost<F[v][state])
                    {
                        F[v][state]=F[u][state]+cost;
                        if(!vis[v][state])Q.push(PII(v,state)),vis[v][state]=1;
                    }
            }
      }
    
    int DP[two(maxP)+10];
    
    #define wei(v,k) ((v>>((k)-1))&1)
    inline int check(int s)
      {
          int i;
          re(i,1,P)if( (s&val[i])!=0 && (s&val[i])!=val[i] ) return 0;
          return 1;
      }
    
    int main()
      {
          freopen("bzoj4006.in","r",stdin);
          freopen("bzoj4006.out","w",stdout);
          int i,j;
          N=gint();M=gint();P=gint();
          now=-1;mmst(first,-1);
          re(i,1,M)
            {
                int u=gint(),v=gint(),cost=gint();
                addedge(u,v,cost);
                addedge(v,u,cost);
            }
          mmst(F,0x3f);
          re(i,1,P)
            {
                int t=gint(),id=gint();
                bit[id]=two(i-1);
                val[t]+=bit[id];
                F[id][bit[id]]=0;
            }
          int state,maxstate=two(P)-1;
          re(state,1,maxstate)
            {
                re(i,1,N)
                  {
                    for(int s=(state-1)&state;s;s=(s-1)&state)
                      upmin(F[i][state],F[i][s]+F[i][state-s]);
                    if(F[i][state]!=INF)Q.push(PII(i,state)),vis[i][state]=1;
                  }
                SPFA();
            }
          mmst(DP,0x3f);
          re(state,1,maxstate)re(i,1,N)upmin(DP[state],F[i][state]);
          re(i,1,maxstate)if(check(i))
            for(j=(i-1)&i;j;j=(j-1)&i)if(check(j))
              upmin(DP[i],DP[j]+DP[i-j]);
          cout<<DP[maxstate]<<endl;
          return 0;
      }
    View Code
  • 相关阅读:
    洛谷P2516 [HAOI2010]最长公共子序列 动态规划 容斥原理
    [LeetCode]235. Lowest Common Ancestor of a Binary Search Tree
    [LeetCode]144. Binary Tree Preorder Traversal二叉树前序遍历
    [LeetCode]129. Sum Root to Leaf Numbers路径数字求和
    [leetcode]645. Set Mismatch
    [leetcode]110BalancedBinaryTree平衡二叉树
    [leetcode]199. Binary Tree Right Side View
    [LeetCode]116. Populating Next Right Pointers in Each Node
    [leetcode]720. Longest Word in Dictionary字典中最长的单词
    [LeetCode]690. Employee Importance员工重要信息
  • 原文地址:https://www.cnblogs.com/maijing/p/4761495.html
Copyright © 2011-2022 走看看