zoukankan      html  css  js  c++  java
  • WordCount

     Map过程需要继承org.apache.hadoop.mapreduce包中Mapper类,并重写其 map方法。通过在map方法中添加两句把key值和value值输出到控制台的代码,可以发现map方法中value值存储的是文本文件中的一行(以回 车符为行结束标记),而key值为该行的首字母相对于文本文件的首地址的偏移量。然后StringTokenizer类将每一行拆分成为一个个的单词,并 将作为map方法的结果输出,其余的工作都交有MapReduce框架处理。

           Reduce过程需要继承org.apache.hadoop.mapreduce包中Reducer类,并重写其reduce方法。Map过程输出中key为单个单词,而values是对应单词的计数值所组成的列表,Map的输出就是Reduce的输入,所以reduce方法只要遍历values并求和,即可得到某个单词的总次数。

           在MapReduce中,由Job对象负责管理和运行一个计算任务,并通过Job的一些方法对任务的参数进行相关的设置。此处设置了使用 TokenizerMapper完成Map过程中的处理和使用IntSumReducer完成Combine和Reduce过程中的处理。还设置了Map 过程和Reduce过程的输出类型:key的类型为Text,value的类型为IntWritable。任务的输出和输入路径则由命令行参数指定,并由FileInputFormat和FileOutputFormat分别设定。完成相应任务的参数设定后,即可调用job.waitForCompletion()方法执行任务。

    源代码如下:

    package com.hadoop.test1;

    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;

    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;

    public class WordCount {
        public static class TokenizerMapper extends
                Mapper {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();

            protected void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
                StringTokenizer tokenizer = new StringTokenizer(value.toString());
                while (tokenizer.hasMoreTokens()) {
                    word.set(tokenizer.nextToken());
                    context.write(word, one);
                }
            }
        }

        public static class IntSumReducer extends
                Reducer {
            private IntWritable result = new IntWritable();

            protected void reduce(Text key, Iterator values,
                    Context context) throws IOException, InterruptedException {
                int sum = 0;
                while (values.hasNext()) {
                    sum += values.next().get();
                }
                result.set(sum);
                context.write(key, result);
            }
        }

        public static void main(String[] args) throws IOException,
                InterruptedException, ClassNotFoundException {

            // section 1
            Configuration conf = new Configuration();
            String[] otherArgs = new GenericOptionsParser(conf, args)
                    .getRemainingArgs();
            if (otherArgs.length != 2) {
                System.err.println("Usage : wordcount ");
                System.exit(2);
            }
            Job job = new Job(conf, "wordcount");
            job.setJarByClass(WordCount.class);

            // section2
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);

            // section3
            job.setMapperClass(TokenizerMapper.class);
            job.setCombinerClass(IntSumReducer.class);

            // section4
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

            // section5
            System.exit(job.waitForCompletion(true) ? 0 : 1);

        }
    }

          
     
  • 相关阅读:
    多种方式安装GitLabRunner
    rpm,docker,k8s三种方式安装部署GitLab服务
    利用curl命令访问Kubernetes API server
    在客户端电脑使用 kubectl 远程管理 Kubernetes
    利用 Nginx 反向代理搭建本地 yum 服务器
    Jenkins和Gitlab CI/CD自动更新k8s中pod使用的镜像说明
    1.在 Kubernetes 在快速安装 Harbor
    4.Gitlab CI 与 Kubernetes 的结合
    3.在 Kubernetes 上安装 Gitlab CI Runner
    2. 在 Kubernetes 上安装 Gitlab
  • 原文地址:https://www.cnblogs.com/majingjing/p/5546661.html
Copyright © 2011-2022 走看看