zoukankan      html  css  js  c++  java
  • ZOJ Problem Set–1180 Self Numbers

    Time Limit: 10 Seconds      Memory Limit: 32768 KB


    In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence

    33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...

    The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.

    Write a program to output all positive self-numbers less than or equal 1000000 in increasing order, one per line.

    Sample Output
    1
    3
    5
    7
    9
    20
    31
    42
    53
    64
    |
    | <-- a lot more numbers
    |
    9903
    9914
    9925
    9927
    9938
    9949
    9960
    9971
    9982
    9993
    |
    |
    |


    Source: Mid-Central USA 1998

    筛选法:

    #include<iostream>
    
    #include<bitset>
    
    using namespace std;
    
    int d(int n)
    
    {
    
      int number = n;
    
      while(n)
    
      {
    
        number += n%10;
    
        n /= 10;
    
      }
    
      return number;
    
    }
    
    bitset<1000001> bs;
    
    int main()
    
    {
    
      bs.set();
    
      int number = 0;
    
      for(int i = 1; i < bs.size(); i++)//删选不符合条件的数字
    
      {
    
        number = d(i);
    
        if(number < bs.size())
    
        {
    
          if(bs.test(number))
    
            bs.reset(number);
    
        }
    
        else
    
          break;
    
      }
    
      for(int i = 1; i < bs.size(); i++)
    
      {
    
        if(bs.test(i))
    
          cout<<i<<endl;
    
      }
    
      return 0;
    
    }
  • 相关阅读:
    Tips(持续跟新)
    icpc 2018 徐州 网络赛 B 博弈+记忆化搜索
    2018 徐州 icpc 网络赛 A 递推or数学公式
    2018 徐州icpc网络赛 G 分块
    HDU 3092 Least common multiple(完全背包+思维)
    hdu 4747(DP?线性递推)
    Pell-方程学习小结
    C++中map的介绍用法以及Gym题目:Two Sequences
    求最长上升子序列和最长非下降子序列
    dfs+枚举,flip游戏的拓展POJ2965
  • 原文地址:https://www.cnblogs.com/malloc/p/2398595.html
Copyright © 2011-2022 走看看