zoukankan      html  css  js  c++  java
  • hdu 1969 Pie

    Pie

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3399    Accepted Submission(s): 1320


    Problem Description
    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

    My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

    What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
     
    Input
    One line with a positive integer: the number of test cases. Then for each test case:
    ---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
    ---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
     
    Output
    For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
     
    Sample Input
    3
    3 3
    4 3 3
    1 24
    5
    10 5
    1 4 2 3 4 5 6 5 4 2
     
    Sample Output
    25.1327
    3.1416
    50.2655
     
    Source
     
     
     1 #include<iostream>
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<cstdlib>
     5 #include<math.h>
     6 using namespace std;
     7 const double pi =acos(-1.0);
     8 
     9 int a[10012];
    10 
    11 int  fun(double x,int n)
    12 {
    13     int i,num=0;
    14     double y;
    15     for(i=1;i<=n;i++)
    16     {
    17         y=a[i]*a[i]*pi;
    18         num=num+(int)(y/x);
    19     }
    20     return num;
    21 }
    22 int main()
    23 {
    24     int T,i,N,F,MAX,ans;
    25     double l,r,mid;
    26     scanf("%d",&T);
    27     while(T--)
    28     {
    29         scanf("%d%d",&N,&F);
    30         F++;
    31         for(i=1,MAX=-1;i<=N;i++)
    32         {
    33             scanf("%d",&a[i]);
    34             if(a[i]>MAX) MAX=a[i];
    35         }
    36         l=0;r=MAX*MAX*pi;
    37         while(r-l>1e-7)
    38         {
    39             mid=(l+r)/2;
    40             ans=fun(mid,N);
    41             if( ans >=F )
    42                 l=mid;
    43             else r=mid;
    44         }
    45         printf("%.4lf
    ",mid);
    46     }
    47     return 0;
    48 }
  • 相关阅读:
    一张图理解prototype、proto和constructor的三角关系
    深入理解javascript对象系列第三篇——神秘的属性描述符
    深入理解javascript对象系列第二篇——属性操作
    深入理解javascript对象系列第一篇——初识对象
    javascript类型系统——Math对象
    Django的第一个页面
    关于原型链
    js中的继承问题
    面向对象关于函数以及this的问题
    关于bind、call以及apply
  • 原文地址:https://www.cnblogs.com/tom987690183/p/3563775.html
Copyright © 2011-2022 走看看