zoukankan      html  css  js  c++  java
  • Codeforces 551 D. GukiZ and Binary Operations

    (>Codeforces space 551 D. GukiZ and Binary Operations<)

    题目大意 :给出 (n, k) 求有多少个长度为 (n) 的序列 (a) 满足 ((a_1 and a_2)or(a_2 and a_3)or..or(a_{n-1} and a_n) = k)(a_i leq k leq 2^l)

    并输出方案数在$mod m $ 意义下的值

    (0≤ n ≤ 10^{18}, 0 ≤ k ≤ 10^{18}, 0 leq l leq 64, 1 leq m leq 10^9 + 7)

    解题思路 :

    考虑对于二进制按位拆开来考虑,设某一位最终为 (i) 的方案为 (g_i (i = 0 / 1))

    因为位与位之间相互不影响,由此可以得到 $Ans = sum_{i = 0}^{l - 1} g_{(2^i and space k)} $

    问题转化为如何求出 (g_i), 观察发现 (g_i) 只要求出一个,另外一个就是 (2^n - g_i)

    仔细分析后发现 (g_0) 比较好求,设 (f_i) 为前 (i) 位的式子的结果为 (0) 的方案

    考虑第 (i) 位后答案若要为 (0) ,如果第 (i) 位选 (1),那么第 (i - 1) 位必然选 (1) ,方案数就是 (f_{i-2})

    否则第 (i) 位选 (0), 第 (i-1) 位选什么都可以,方案数是 (f_{i-1}) 所以有 (f_i = f_{i-1} + f_{i-2})

    发现式子其实就是斐波那契数列的递推式, 用矩阵快速幂求出后把得到的 (g_0)(g_1) 带回先前的式子算出答案即可


    /*program by mangoyang*/
    #include<bits/stdc++.h>
    #define inf (0x7f7f7f7f)
    #define Max(a, b) ((a) > (b) ? (a) : (b))
    #define Min(a, b) ((a) < (b) ? (a) : (b))
    typedef long long ll;
    using namespace std;
    template <class T>
    inline void read(T &x){
        int f = 0, ch = 0; x = 0;
        for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
        for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
        if(f) x = -x;
    }
    #define int ll
    int n, k, l, Mod;
    const int le = 2;
    struct Matrix{
    	int a[le+5][le+5];
    	inline Matrix(){ memset(a, 0, sizeof(a)); }
    	inline void write(){
    		for(int i = 1; i <= le; i++, putchar('
    '))
    			for(int j = 1; j <= le; j++) cout << a[i][j] << " ";
    	}
    };
    inline Matrix Mult(Matrix A, Matrix B){
    	Matrix C;
    	for(int i = 1; i <= le; i++)
    		for(int j = 1; j <= le; j++)
    			for(int k = 1; k <= le; k++)
    				(C.a[i][j] += A.a[i][k] * B.a[k][j]) %= Mod;
    	return C;
    }
    inline Matrix Power(Matrix a, int b){
    	Matrix ans = a; b--;
    	for(; b; b >>= 1, a = Mult(a, a))
    		if(b & 1) ans = Mult(ans, a);
    	return ans;
    }
    inline ll Pow(int a, int b){
    	int ans = 1;
    	for(; b; b >>= 1, a = a * a % Mod)
    		if(b & 1) ans = ans * a % Mod;
    	return ans; 
    }
    main(){
    	read(n), read(k), read(l), read(Mod);
    	if(l < 63 && k >= (1ll << l)) return puts("0"), 0;
    	int all = Pow(2, n);
    	Matrix A, B;
    	A.a[1][1] = A.a[2][1] = 1;
    	B.a[1][1] = B.a[1][2] = B.a[2][1] = 1;
    	B = Power(B, n), A = Mult(B, A);
    	int now = (all - A.a[1][1] + Mod) % Mod, ans = 1 % Mod;
    	for(int i = 0; i < l; i++)
    		if((1ll << i) & k) (ans *= now) %= Mod;
    			else (ans *= A.a[1][1]) %= Mod;
    	cout << ans % Mod;
    	return 0;
    }
    
  • 相关阅读:
    shell (3) 磁盘挂载
    QByteArray 内存拷贝异常
    记录QTextEdit
    QTableWidget 使用
    QT 读写xml
    远程工具长时间待机断网解决办法
    qt读写json文件
    QT 资源文件(.qrc)
    error: C1041: 无法打开程序数据库“E:ProjectQtuild-QCaculator-Desktop_Qt_5_14_1_MSVC2017_32_bit-DebugdebugQCaculator.vc.pdb”;如果要将多个 CL.EXE 写入同一个 .PDB 文件,请使用 /FS
    Vs2019+Qt5.14环境配置,安装qt visual studio tools报错。
  • 原文地址:https://www.cnblogs.com/mangoyang/p/9302079.html
Copyright © 2011-2022 走看看