zoukankan      html  css  js  c++  java
  • [机器学习Lesson 2]代价函数之线性回归算法

    本章内容主要是介绍:单变量线性回归算法(Linear regression with one variable)

    1. 线性回归算法(linear regression)

    1.1 预测房屋价格

    下图是俄勒冈州波特兰市的住房价格和面积大小的关系:

    数据集包含俄勒冈州波特兰市的住房价格

    该问题属于监督学习中的回归问题,让我们来复习一下:

    • 监督学习(Supervised'Learning'):对示例数据给出“正确答案”。
      • 回归问题(Regression 'Problem'):根据之前的数据预测出一个准确的输出值 。

    1.2 训练集

    image

    • m=训练样本数量
    • x's=输入变量/特征量
    • y's=输出变量/目标变量,预测结果

    (x,y)表示一个训练样本。

    x(1) 指的是 第一个训练集里值为2104的输入值, 这个就是第一行里的x x(2) 等于1416。这是第二个x y(1) 等于460,这是第一个训练集样本的y值, 这就是(1)所代表的含义。

    这就是一个监督学习算法的工作方式,我们可以看到这里有我们的训练集里房屋价格,我们把它喂给我们的学习算法,然后输出一个函数。

    按照惯例,通常表示为小写h代表hypothesis(假设) h表示一个函数。输入是房屋尺寸大小,就像你朋友想出售的房屋。因此,h 根据输入的 x 值来得出 y 值。 y值对应房子的价格。所以h是一个从x到y的函数映射 。

    • y关于x的线性函数 :
     hθ(x)=θ0+θ1*x 
    

    image

    这个模型被称为线性回归(linear regression)模型。 这实际上是关于单个变量的线性回归,这个变量就是x 根据x来预测所有的价格函数。同时, 对于这种模型有另外一个名称,称作单变量线性回归 单变量是对一个变量的一种特别的表述方式。总而言之 这就是线性回归。

    2. 代价函数(Cost Function)

    任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。

    J(θ0,θ1)=12m$sum$i=1m(y^i−yi)2=12m∑i=1m(hθ(xi)−yi)2

    image

    • m:训练样本的个数;

    • hθ(x):用参数θ和x预测出来的y值;

    • y:原训练样本中的y值,也就是标准答案

    • 上角标(i):第i个样本

    3. 代价函数1(简化版):当θ0=0时

    hθ(x)=θ1x,如下图:

    重要公式

    image

    • Hypothesis: 假设。这个例子中是尺寸对于房价关系的预测。
    • Parameters: 参数。
    • Cost Function:代价函数。
    • Goal: 优化目标。代价最小化。

    3.1 斜率为1时的代价函数

    image

    (1)假设函数

    x轴为面积,y轴为房价

    假设函数 h(x) 对于一个固定的θ1,这是一个关于x 的函数。 所以这个假设函数就是一个关于 x 这个房子大小的函数。

    (2)代价函数

    x轴为假设函数的斜率,y即代价大小

    代价函数 J 是一个关于参数 θ1 的函数,而 θ1 控制着这条直线的斜率 。

    3.2 斜率为0.5时的代价函数

    image

    斜率为0.5时,取3个样本(m=3):(0.5,1),(1,2),(1.5,3)。套公式得出J(0.5)=0.58
    同理,J(0)=1/6(1²+2²+3²)=14/6,求出更多的点之后,我们得出类似以下函数:

    image

    学习算法的优化目标是我们想找到一个 θ1 的值,来将 J(θ1) 最小化。这是我们线性回归的目标函数。 上面的曲线中,让 J(θ1) 最小化的值是 θ1=1。这个确实就对应着最佳的通过了数据点的拟合直线 。这条直线就是由 θ1=1 的设定而得到的。 对于这个特定的训练样本,我们最后能够完美地拟合 这就是为什么最小化 J(θ1),对应着寻找一个最佳拟合直线的目标。

    4. 代价函数2:完整版

    包含θ0、θ1两个参数的代价函数呈现出来的是类似下图的三维曲面图,两个轴分别表示θ0、θ1。

    image

    在ML中,一般使用轮廓图( contour plot 或 contour figure 的意思)描述该模型。

    4.1 轮廓图简介

    image

    右侧图形就是一个轮廓图,两个轴分别表示θ0和θ1。 而这些一圈一圈的椭圆形,每一个圈就表示J(θ0,θ1) 相同的所有点的集合。

    如图选取三个点,这三个点都表示相同的 J(θ0,θ1) 的值。横纵坐标分别是θ0, θ1 这三个点的 J(θ0,θ1) 值是相同的。我们需要算的代价函数即为圆心的点,此时我们的代价最小。

    4.2 第一组数据

    我们选取一组数据,θ0=800θ1=-0.15,此时我们可以对应得到一个左边这样一条线。

    image

    以这组 θ0,θ1 为参数的这个假设 h(x) 并不是数据的较好拟合。并且你也发现了这个代价值 距离最小值点还很远。也就是说这个代价值还是算比较大的,因此不能很好拟合数据。

    4.3 第二组数据

    选取第二组数据

    θ0=360θ1=0。我们可以得到h(x)=360+0*x这样一条直线。同样不能很好的拟合数据。

    4.4 第三组数据

    最后一个例子:
    image

    这个点其实不是最小值,但已经非常靠近最小值点了。 这个点对数据的拟合就很不错,它对应这样两个θ0 和 θ1 的值。同时也对应这样一个 h(x) 这个点虽然不在最小值点,但非常接近了。 因此误差平方和,或者说 训练样本和假设的距离的平方和,这个距离值的平方和 非常接近于最小值,尽管它还不是最小值。

    5. 小结

    通过这些图形,本篇文章主要是帮助理解这些代价函数 J 所表达的值;它们是什么样的它们对应的假设是什么样的;以及什么样的假设对应的点更接近于代价函数J的最小值。

    我们真正需要的是一种有效的算法,能够自动地找出这些使代价函数J取最小值的参数θ0和θ1来。我们也不希望编个程序 把这些点画出来,然后人工的方法来读出这些点的数值,这很明显不是一个好办法。

    事实上在深入机器学习的过程中, 我们会遇到更复杂、更高维度、更多参数的情况。而这些情况是很难画出图的,因此更无法将其可视化,因此我们真正需要的,是编写程序来找出这些最小化代价函数的θ0和θ1的值。在后续文章中将介绍一种算法 能够自动地找出能使代价函数 J最小化的参数θ0和θ1的值。


    本文资料部分来源于吴恩达 (Andrew Ng) 博士的斯坦福大学机器学习公开课视频教程。

    [1]网易云课堂机器学习课程:
    http://open.163.com/special/opencourse/machinelearning.html
    [2]coursera课程:
    https://www.coursera.org/learn/machine-learning/

  • 相关阅读:
    算法学习概述(2016.6)
    java异常和错误类总结(2016.5)
    java string 细节原理分析(2016.5)
    MySQL 5.7.18 解压版安装
    Struts2的<s:date>标签使用详解[转]
    jprofile查看hprof文件[转]
    iBatis的Settings节点参数详解[转]
    window.open、window.showModalDialog和window.showModelessDialog 的区别[转]
    oracle 字典表查询
    oracle 表空间操作
  • 原文地址:https://www.cnblogs.com/mantoudev/p/8654863.html
Copyright © 2011-2022 走看看