概述
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients.
系统架构图
启动过程
我们首先通过netty官方的demo来分析一下,TelnetServer。
public final class TelnetServer {
static final boolean SSL = System.getProperty("ssl") != null;
static final int PORT = Integer.parseInt(System.getProperty("port", SSL? "8992" : "8023"));
public static void main(String[] args) throws Exception {
// Configure SSL.
final SslContext sslCtx;
if (SSL) {
SelfSignedCertificate ssc = new SelfSignedCertificate();
sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build();
} else {
sslCtx = null;
}
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new TelnetServerInitializer(sslCtx));
b.bind(PORT).sync().channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
通过上面的代码,我们总结一下:
- 服务端在启动时,需要使用到两个EventLoopGroup,一个是作为监听服务端口,用于accept客户端的连接请求,并创建channel的线程池,线程数量一般设为1即可;另一个是负责channel的read & write等事件的worker线程池,如果没有指定初始值大小,默认为cpu核数*2,详见源码MultithreadEventLoopGroup
- 指定channel类为NioServerSocketChannel
- 通过childHandler方法指定业务处理的ChannelHandler
系统监听
TelnetServer中的bossGroup的线程数量设置为1,我有个疑问,线程数量如果大于1会怎么样?我们先看看netty相关的系统监听和服务注册的源码。服务的起点在b.bind(PORT).sync().channel().closeFuture().sync(),那么我们就线程b.bind(PORT)开始:
public ChannelFuture bind(int inetPort) {
return bind(new InetSocketAddress(inetPort));
}
public ChannelFuture bind(SocketAddress localAddress) {
validate();
if (localAddress == null) {
throw new NullPointerException("localAddress");
}
return doBind(localAddress);
}
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
...
if (regFuture.isDone()) {
// At this point we know that the registration was complete and successful.
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
...
}
}
上面的三个方法的代码中,最重要的是initAndRegister()和doBind0两个方法,下面我们先来看一下initAndRegister方法:
final ChannelFuture initAndRegister() {
Channel channel = null;
try {
channel = channelFactory.newChannel();
init(channel);
}
...
ChannelFuture regFuture = config().group().register(channel);
...
return regFuture;
}
其中,channelFactory.newChannel()会创建一个NioServerSocketChannel的实例,这个就和我们的demo中.channel(NioServerSocketChannel.class)就联系起来了。我们重点来看看init(channel)和config().group().register(channel),先来看看init方法,init方法在ServerBootstrap中:
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options0();
synchronized (options) {
setChannelOptions(channel, options, logger);
}
final Map<AttributeKey<?>, Object> attrs = attrs0();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
}
ChannelPipeline p = channel.pipeline();
System.out.println("hanlder names is :"+p.names());
final EventLoopGroup currentChildGroup = childGroup;
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
}
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = config.handler();
if (handler != null) {
pipeline.addLast(handler);
}
ch.eventLoop().execute(new Runnable() {
@Override
public void run() {
pipeline.addLast(new ServerBootstrapAcceptor(
ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
});
System.out.println("hanlder names is :"+p.names());
}
上面的代码可以发现,init主要干了下面的几件事:
- 初始化option和AttributeKey参数;
- 获取到channel对应的pipeline,注意每个channel的一生中都会有且只有一个pipeline,这里我们只要知道这个pipeline的类型是:DefaultChannelPipeline,我们对于pipeline添加了两行system.out代码,第一行输出:hanlder names is :[DefaultChannelPipeline$TailContext#0],;
- p.addLast(new ChannelInitializer<Channel>()主要是为了加入新的连接处理器,后面的章节会专门来介绍pipeline,加入完新的链接处理器后,我们的输出变为了:hanlder names is :[ServerBootstrap$1#0, DefaultChannelPipeline$TailContext#0];
我们再来看看config().group().register(channel)相关的代码,其中config().group()获取到的group就是demo中的:bossGroup,看一下此group下实现的register源码:
public ChannelFuture register(Channel channel) {
return next().register(channel);
}
其中的next()方法会从此group中获取到一个NioEventLoop,关于创建NioEventLoop的过程及分配线程的细节,大家有兴趣的可以自行研究一下NioEventLoopGroup。接下来,我们再来看看NioEventLoop的register方法:
public ChannelFuture register(Channel channel) {
return register(new DefaultChannelPromise(channel, this));
}
public ChannelFuture register(final ChannelPromise promise) {
ObjectUtil.checkNotNull(promise, "promise");
promise.channel().unsafe().register(this, promise);
return promise;
}
其中promise.channel().unsafe().register方法在AbstractUnsafe类里面:
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
...
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
}
...
}
}
AbstractChannel.this.eventLoop = eventLoop 这行代码将此unsafe对象和NioEventLoopGroup分配的NioEventLoop绑定,其实就是将NioServerSocketChannel和它的eventLoop进行绑定,使得此NioServerSocketChannel相关的代码只能在eventLoop的专属线程里执行,这里也可以回答了我们开头的问题:“TelnetServer中的bossGroup的线程数量设置为1,我有个疑问,线程数量如果大于1会怎么样?”,答案是:线程数量只能设置为1,因为有且只有一个线程会服务于NioServerSocketChannel,设置多了是浪费。我们再来看看register0()相关的代码,注意register0()相关的代码执行已经是在eventLoop的专属线程里执行的了:
private void register0(ChannelPromise promise) {
try {
...
doRegister();
...
pipeline.invokeHandlerAddedIfNeeded();
safeSetSuccess(promise);
pipeline.fireChannelRegistered();
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
beginRead();
}
}
}
...
}
这里面比较重要的是doRegister()、isActive(),我们先来看看doRegister()方法:
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
}
...
}
}
javaChannel().register方法调用jdk底层的channel进行注册,具体逻辑就不深入下去,我们再来看看上面的isActive()方法:
public boolean isActive() {
return javaChannel().socket().isBound();
}
判断端口是否绑定,因为我们现在还没绑定,所以这里会返回false。接下来,我们再来回头看之前提到的AbstractBootstrap的doBind0()方法:
private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) {
// This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up
// the pipeline in its channelRegistered() implementation.
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
上面代码中的channel.bind会调用到AbstractChannel的bind方法:
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}
继续来看DefaultChannelPipeline中的bind方法:
public final ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return tail.bind(localAddress, promise);
}
tail的类型是TailContext,我们来看看它里面的bind方法:
public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
final AbstractChannelHandlerContext next = findContextOutbound();
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeBind(localAddress, promise);
} else {
safeExecute(executor, new Runnable() {
@Override
public void run() {
next.invokeBind(localAddress, promise);
}
}, promise, null);
}
return promise;
}
上面的代码中的next类型为HeadContext,因为已经在eventLoop里面,所以会直接执行next.invokeBind(localAddress, promise),源码如下:
private void invokeBind(SocketAddress localAddress, ChannelPromise promise) {
if (invokeHandler()) {
try {
((ChannelOutboundHandler) handler()).bind(this, localAddress, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
} else {
bind(localAddress, promise);
}
}
((ChannelOutboundHandler) handler()).bind方法,我们再来看看这个hanlder的bind方法:
public void bind(
ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
throws Exception {
unsafe.bind(localAddress, promise);
}
又调到了unsafe里面的方法,我们继续分析:
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
...
boolean wasActive = isActive();
try {
doBind(localAddress);
}
...
if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
}
safeSetSuccess(promise);
}
核心代码是doBind方法的调用,它在NioServerSocketChannel中,我们来继续分析:
protected void doBind(SocketAddress localAddress) throws Exception {
if (PlatformDependent.javaVersion() >= 7) {
javaChannel().bind(localAddress, config.getBacklog());
} else {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
}
doBind方法里面就开始调用jdk的相关绑定端口的底层代码,到此我们nioserver的启动流程就已经分析完毕,我们来总结一下:
- ServerBootstrap bossGroup的线程数设置为1是最好的,因为在netty中任何channel的eventloop只能有一个;
- ServerBootstap在启动过程中有两个比较重要的流程分析,分别是:initAndRegister()和doBind0两个方法,其中initAndRegister实现NioServerSocketChannel的创建、参数的初始化、eventloop的初始化和channel的绑定、业务的handler注册到pipeline中;doBind0主要是调用jdk底层进行端口监听;
- 下图是以时序图的方式做的一个流程总结;
启动过程中涉及到的设计模式总结:
- 工厂方法+反射:NioServerSocketChannel类对象的创建使用了工厂方法+反射的机制,使得netty在架构上可以支持Channel接口的实现类的扩展;
- Future模式:netty中的ChannelFuture和ChannelPromise都是Future模式的使用和扩展;
ChannelPipeline
在前面的server启动分析时,我们就遇到了ChannelPipeline,这个章节我们着重介绍一下ChannelPipeline。首先我们来看一下ChannelPipeline的类结构关系图: 如上图所示,ChannelPipeline的继承关系比较简单,我们实际使用的pipeline对象都是DefaultChannelPipeline类的对象。我们在来看一张pipeline和其它重要对象的关系图: 由上面的图片上可以看出,以下几点:
- 在netty中,每一个channel都有且只有一个ChannelPipeline为之提供服务;
- DefaultChannelPipeline中有两个固定的ContextHandler存在,一个是head(HeadContext),一个是tail(TailContext);
- 我们需要添加的业务处理Context会添加到head和tail之间,并形成一个双向链表;
我们先提个问题,为什么要有双向链表,难道单向的链表不可以吗?我们先来看看DefaultChannelPipeline中的构造方法源码:
protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel");
succeededFuture = new SucceededChannelFuture(channel, null);
voidPromise = new VoidChannelPromise(channel, true);
tail = new TailContext(this);
head = new HeadContext(this);
head.next = tail;
tail.prev = head;
}
DefaultChannelPipeline在初始化的时候,会创建两个context,一个为tail,一个为head,tail和head组成双向链表结构,后续业务添加的context/handler对,都会加入到这个双向链表结构里面。我们先来看一下TailContext的源码:
final class TailContext extends AbstractChannelHandlerContext implements ChannelInboundHandler {
TailContext(DefaultChannelPipeline pipeline) {
super(pipeline, null, TAIL_NAME, true, false);
setAddComplete();
}
}
上面的代码中,主要是调用了父类的构造方法:
AbstractChannelHandlerContext(DefaultChannelPipeline pipeline, EventExecutor executor, String name,
boolean inbound, boolean outbound) {
this.name = ObjectUtil.checkNotNull(name, "name");
this.pipeline = pipeline;
this.executor = executor;
this.inbound = inbound;
this.outbound = outbound;
// Its ordered if its driven by the EventLoop or the given Executor is an instanceof OrderedEventExecutor.
ordered = executor == null || executor instanceof OrderedEventExecutor;
}
注意,tail的outbound标志是false,inbound是true,从字面意义来理解,tail是用来处理inbound事件的,它不能处理outbound相关的事件。但真实的情况却并不完全是这样,head会是一个例外。head和tail它们既是HandlerContext的同时,又是HandlerContext关联的hanlder,来看一下代码:
public ChannelHandler handler() {
return this;
}
我们再来看看HeadContext的源码:
final class HeadContext extends AbstractChannelHandlerContext
implements ChannelOutboundHandler, ChannelInboundHandler {
private final Unsafe unsafe;
HeadContext(DefaultChannelPipeline pipeline) {
super(pipeline, null, HEAD_NAME, false, true);
unsafe = pipeline.channel().unsafe();
setAddComplete();
}
}
head的inbound标志是true,outbound的标志是false,按照之前的说法,head就只能处理outbound相关的事件的,但事实上不是这样的:我们可以发现一个head和tail实现细节的不同:head同时实现了ChannelOutboundHandler和ChannelInboundHandler接口,而tail只实现了ChannelInboundHandler接口。下面以一个inbound事件来进行分析一下:先来看DefaultPipeline中的fireChannelRegistered():
public final ChannelPipeline fireChannelRegistered() {
AbstractChannelHandlerContext.invokeChannelRegistered(head);
return this;
}
方法调用了AbstractChannelHandlerContext的静态方法,并将head作为参数:
static void invokeChannelRegistered(final AbstractChannelHandlerContext next) {
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeChannelRegistered();
} else {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeChannelRegistered();
}
});
}
}
上面的代码将会在eventloop下调用head的invokeChannelRegistered,我们再来看看:
private void invokeChannelRegistered() {
if (invokeHandler()) {
try {
((ChannelInboundHandler) handler()).channelRegistered(this);
} catch (Throwable t) {
notifyHandlerException(t);
}
} else {
fireChannelRegistered();
}
}
上面的方法会调用到head的channelRegistered方法里面,我们暂时分析到这里,代码分析的结论与我们刚刚的分析判断是一致的:head既可以处理inbound事件,也可以处理outbound事件。
inbound & outbound事件
我们刚刚分析的ChannelRegistered,就是一个典型的inbound事件。下面我们来分析一下inbound和outbound事件。下图是来自于netty官网关于inbound和outbound事件顺序的图示。由图可知:
- inbound事件一般是来源于socket.read方法;
- outbound事件来源于上层业务的调用,一般会调用到socket.write方法;
- inbound和outbound事件的处理方向相反,但都会沿着各自的方向单向传播;
I/O Request
via Channel or
ChannelHandlerContext
|
+---------------------------------------------------+---------------+
| ChannelPipeline | |
| |/ |
| +---------------------+ +-----------+----------+ |
| | Inbound Handler N | | Outbound Handler 1 | |
| +----------+----------+ +-----------+----------+ |
| /| | |
| | |/ |
| +----------+----------+ +-----------+----------+ |
| | Inbound Handler N-1 | | Outbound Handler 2 | |
| +----------+----------+ +-----------+----------+ |
| /| . |
| . . |
| ChannelHandlerContext.fireIN_EVT() ChannelHandlerContext.OUT_EVT()|
| [ method call] [method call] |
| . . |
| . |/ |
| +----------+----------+ +-----------+----------+ |
| | Inbound Handler 2 | | Outbound Handler M-1 | |
| +----------+----------+ +-----------+----------+ |
| /| | |
| | |/ |
| +----------+----------+ +-----------+----------+ |
| | Inbound Handler 1 | | Outbound Handler M | |
| +----------+----------+ +-----------+----------+ |
| /| | |
+---------------+-----------------------------------+---------------+
| |/
+---------------+-----------------------------------+---------------+
| | | |
| [ Socket.read() ] [ Socket.write() ] |
| |
| Netty Internal I/O Threads (Transport Implementation) |
+-------------------------------------------------------------------+
inbound事件
我们来详细的分析一下inbound事件相关的源码。首先,我们来看看inbound事件有哪些:
fireChannelRegistered;
fireChannelUnregistered;
fireChannelActive;
fireChannelInactive;
fireChannelRead(Object msg);
fireChannelReadComplete;
fireUserEventTriggered(Object event)
fireChannelWritabilityChanged;
fireExceptionCaught(Throwable cause);
inbound事件共用9个事件,它们都是以fire...开头。我们来简单看一下fireChannelRead相关的流程代码,流程的起点是在NioByteUnsafe的read方法:
public final void read() {
...
try {
do {
byteBuf = allocHandle.allocate(allocator);
allocHandle.lastBytesRead(doReadBytes(byteBuf));
...
allocHandle.incMessagesRead(1);
readPending = false;
pipeline.fireChannelRead(byteBuf);
byteBuf = null;
} while (allocHandle.continueReading());
allocHandle.readComplete();
pipeline.fireChannelReadComplete();
if (close) {
closeOnRead(pipeline);
}
}
...
}
每次从底层的socket里面读取到内容,netty都会调用pipeline的fireChannelRead方法,此方法就是我们刚刚看到的inbound事件里面的方法:
public final ChannelPipeline fireChannelRead(Object msg) {
AbstractChannelHandlerContext.invokeChannelRead(head, msg);
return this;
}
上面的pipeline代码会调用到AbstractChannelHandlerContext的invokeChannelRead方法并将head和读取到的msg传递过去,我们再来看看invokeChannelRead:
static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeChannelRead(m);
} else {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeChannelRead(m);
}
});
}
}
上面的方法会先调用head的invokeChannelRead方法,进入head中进行处理:
private void invokeChannelRead(Object msg) {
if (invokeHandler()) {
try {
((ChannelInboundHandler) handler()).channelRead(this, msg);
} catch (Throwable t) {
notifyHandlerException(t);
}
} else {
fireChannelRead(msg);
}
}
流程进入到head的channelRead方法,我们来看看:
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ctx.fireChannelRead(msg);
}
上面的代码中的ctx还是head本身,我们来看看head的fireChannelRead方法:
public ChannelHandlerContext fireChannelRead(final Object msg) {
invokeChannelRead(findContextInbound(), msg);
return this;
}
上面的方法中会通过我们看看已经看到过的invokeChannelRead方法,调用到head的下一个的处理inbound事件的Context中去,后面代码我们便不展开。我们总结一下inbound相关事件的处理:
- inbound事件一般是来源于socket的read方法;
- netty目前的inbound事件一共有9种;
- netty的inbound事件在pipeline中方法的起点是以fire...()开头的方法,inbound事件会从head节点开始向后传递并处理;
outbound事件
我们再来看看outbound的事件有哪些,outbound的事件比inbound事件会复杂一些,因为它的外部调用接口会比较多,但是抽象一下,就是下面这几种事件:
bind;
connect;
disconnect;
close;
deregister;
read;
write;
flush;
outbound的事件入口也在pipeline的公共方法里,例如write的流程调用:
public final ChannelFuture writeAndFlush(Object msg) {
return tail.writeAndFlush(msg);
}
上面的方法会调用到tail的writeAndFlush方法里面。关于write流程的分析,后面会有专门的章节分析,在此不展开了。
异常事件
通过上面的分析,我们都了解了inbound和outbound事件相关处理细节,那么在处理inbound和outbound事件时,如果处理逻辑遇到了异常,ChannelPipeline是如何处理的?我们接下来便来分析一下ChannelPipeline里关于异常的处理。按下面三种情况,异常事件的处理情况是不同的:
- inbound事件;
- outbound事件,且需要ChannelPromise模式回调通知的方法;
- outbound事件,但不需要ChannelPromise模式回调通知的方法;
其中,第一和第三两种情况处理方式相同。我们先来看看inbound异常事件的处理。
inbound异常事件
我们选择channelActive来分析,首先来看DefaultPipeline中的fireChannelActive:
public final ChannelPipeline fireChannelActive() {
AbstractChannelHandlerContext.invokeChannelActive(head);
return this;
}
我们再接着往下看:
static void invokeChannelActive(final AbstractChannelHandlerContext next) {
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeChannelActive();
} else {
executor.execute(new Runnable() {
@Override
public void run() {
next.invokeChannelActive();
}
});
}
}
上面的静态方法中,会直接进入到next.invokeChannelActive(),此时的ChannelHandlerContext为head:
private void invokeChannelActive() {
if (invokeHandler()) {
try {
((ChannelInboundHandler) handler()).channelActive(this);
} catch (Throwable t) {
notifyHandlerException(t);
}
} else {
fireChannelActive();
}
}
在上面的代码中,我们假设在try{}模块内抛出了异常,流程便走到了notifyHandlerException:
private void notifyHandlerException(Throwable cause) {
...
invokeExceptionCaught(cause);
}
直接看重点的invokeExceptionCaught:
private void invokeExceptionCaught(final Throwable cause) {
if (invokeHandler()) {
try {
handler().exceptionCaught(this, cause);
} catch (Throwable error) {
...
}
}
...
}
上面的代码会调用到Context对应的handler的exceptionCaught方法,目前我们的context还是head:
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.fireExceptionCaught(cause);
}
再接着看AbstractChannelHandlerContext的方法:
public ChannelHandlerContext fireExceptionCaught(final Throwable cause) {
invokeExceptionCaught(next, cause);
return this;
}
注意上面方法中的next,它是head的next节点,我们再来看看invokeExceptionCaught:
static void invokeExceptionCaught(final AbstractChannelHandlerContext next, final Throwable cause) {
ObjectUtil.checkNotNull(cause, "cause");
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeExceptionCaught(cause);
}
...
}
上面的代码会调用next(下一个Context)的invokeExceptionCaught方法,最终会调用到能处理异常的hanlder,然后终止,netty建议我们将异常处理的Context作为最后一个,也就是tail前面的一个。如果没有能处理此异常的hanlder,那么最后会走到tail中的处理方法。
inbound异常事件总结:
- 异常事件也是在ChanelPipeline上进行传递,传递顺序为由前向后;
- 一般会将tail前一个Context作为异常事件的处理节点,如没有,则会在tail中进行处理;
- outbound异常事件(不需要回调通知ChannelPromise),与inbound事件的处理逻辑完全一致;
outbound异常事件(ChannelPromise)
关于outbound异常事件(ChannelPromise)的处理流程并不是在链表上进行传递处理的,它因为需要通知到ChannelPromise,因此,它的代码最终会走到PromiseNotificationUtil方法中:
public static void tryFailure(Promise<?> p, Throwable cause, InternalLogger logger) {
if (!p.tryFailure(cause) && logger != null) {
Throwable err = p.cause();
if (err == null) {
logger.warn("Failed to mark a promise as failure because it has succeeded already: {}", p, cause);
} else {
logger.warn(
"Failed to mark a promise as failure because it has failed already: {}, unnotified cause: {}",
p, ThrowableUtil.stackTraceToString(err), cause);
}
}
}
上面的代码如果调用通知promise成功,则返回,否则打印日志。
outbound异常事件(ChannelPromise)总结:
- 处理流程简单,直接通知ChannePromise,并不会在ChannelPipeline上进行传递;
最后,我们总结一下inbound和outbound事件:
- inbound事件一般是来源于socket的read方法;
- netty目前的inbound事件一共有9种;
- netty的inbound事件在pipeline中方法的起点是以fire...()开头的方法,inbound事件会从head节点开始向后传递并处理;
- outbound事件一般从pipeline中的方法开始,然后会调用到tail中的方法,然后向前传递并处理,最终会经过head,调用到socket的操作;
- netty目前的outbound事件一共有8种;
- pipeline的双向链表数据结构是为了支持inbound和outbound两种事件的传递;
ChannelPipeline小结
- ChannelPipeline的底层数据结构是一个双向链表结构,双向链表从数据结构上即支持了inbound的outbound两种事件的流转;
- 每个channel都会创建唯一的ChannelPipeline为之服务;
- inbound事件的起点是head、outbound事件的起点是tail;
- ChannelPipeline可以支持Context&Handler动态的添加和删除;
- 异常事件的处理分为inbound异常事件处理、outbound异常事件处理且需要通知ChannelPromise和outbound异常事件但无需通知ChannelPromise三种情况。其中第一种和第三种,都需要在ChannelPipeline上从前到后进行传递;第二种直接回调通知ChannelPromise即可;
涉及到的设计模式总结:
- 管道模型(pipeline):在netty中,所有inbound和outbound事件的传递都离不开pipeline,它的pipeline模型的底层是一个双向链表的数据结构,每个链表的节点代表一个对应事件的handler,当事件传递到某个节点时,先判断是否应该处理,最后向下一个节点传递,可以支持handler的热插拔;
write流程
因为write的流程相对比较复杂,在此我们单独拿一个章节来进行分析。首先,我们来拿netty4中的telnet的demo来说明netty4的write流程:
-
涉及到的类:TelnetClient、AbstractChannel、DefaultChannelPipeline、TailContext、AbstractChannelHandlerContext、SingleThreadEventExecutor、NioEventLoop、AbstractEventExecutor、AbstractChannelHandlerContext.WriteAndFlushTask、
-
流程顺序是:TelnetClient -> AbstractChannel -> DefaultChannelPipeline -> TailContext(AbstractChannelHandlerContext) -> NioEventLoop (SingleThreadEventExecutor) ->NioEventLoop(run方法) -> AbstractEventExecutor(safeExecute方法) -> WriteAndFlushTask(run方法) -> AbstractChannelHandlerContext(hanlder为StringEncoder) -> StringEncoder(write方法) -> HeadContext(invokeWrite方法) -> NioSocketChannelUnsafe(write)
流程的起点在TelnetClient,我们来看一下源码:
lastWriteFuture = ch.writeAndFlush(line + "
");
其中的ch为NioSocketChannel,telnetclient直接调用了NioSocketChannel的父类AbstractChannel(不是直接的父类)中的writeAndFlush方法,代码如下:
public ChannelFuture writeAndFlush(Object msg) {
return pipeline.writeAndFlush(msg);
}
上面的方法比较简单,直接调用了DefaultChannelPipeline的writeAndFlush方法,也就是outbound事件开始在pipeline中传递:
public final ChannelFuture writeAndFlush(Object msg) {
return tail.writeAndFlush(msg);
}
上面的方法调用了TailContext的writeAndFlush方法,其实是TailContext的父类AbstractChannelHandlerContext中的方法:
public ChannelFuture writeAndFlush(Object msg) {
return writeAndFlush(msg, newPromise());
}
public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
if (msg == null) {
throw new NullPointerException("msg");
}
if (isNotValidPromise(promise, true)) {
ReferenceCountUtil.release(msg);
// cancelled
return promise;
}
write(msg, true, promise);
return promise;
}
private void write(Object msg, boolean flush, ChannelPromise promise) {
AbstractChannelHandlerContext next = findContextOutbound();
final Object m = pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
if (flush) {
next.invokeWriteAndFlush(m, promise);
} else {
next.invokeWrite(m, promise);
}
} else {
AbstractWriteTask task;
if (flush) {
task = WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, task, promise, m);
}
}
上面的最后一个方法中,会被调用两次。第一次调用时,第一次的next的ChannelHandlerContext对应的context为handler对应为io.netty.handler.codec.string.StringEncoder的context,context和handler的对应关系为一对一。首先因为executor.inEventLoop() = false,也就是当前线程和channel的专属负责读写的线程不是同一个线程,所以会先走到else中的逻辑里面,先创建一个WriteAndFlushTask类型的task,然后调用safeExecute方法:
private static void safeExecute(EventExecutor executor, Runnable runnable, ChannelPromise promise, Object msg) {
try {
executor.execute(runnable);
} catch (Throwable cause) {
try {
promise.setFailure(cause);
} finally {
if (msg != null) {
ReferenceCountUtil.release(msg);
}
}
}
}
safeExecute会调用NioEventLoop(SingleThreadEventExecutor)里的execute方法:
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
boolean inEventLoop = inEventLoop();
addTask(task);
if (!inEventLoop) {
startThread();
if (isShutdown() && removeTask(task)) {
reject();
}
}
if (!addTaskWakesUp && wakesUpForTask(task)) {
wakeup(inEventLoop);
}
}
上面的代码重点在于addTask方法,我们来看一下细节:
protected void addTask(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
if (!offerTask(task)) {
reject(task);
}
}
final boolean offerTask(Runnable task) {
if (isShutdown()) {
reject();
}
return taskQueue.offer(task);
}
上面的代码显示了,之前生成的task会最终存进类型为: 的taskQueue中LinkedBlockingQueue中,到此为止,业务线程已经将write的操作任务通过队列移交给了NioEventLoop的线程,那么我们再来看看NioEventLoop是如何处理上面的task任务的:
protected void run() {
for (;;) {
try {
...
if (ioRatio == 100) {
...
} else {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
}
...
}
}
上面代码中最核心的处理之前task的地方是通过runAllTasks方法,我们再来看看runAllTasks方法:
protected boolean runAllTasks(long timeoutNanos) {
fetchFromScheduledTaskQueue();
Runnable task = pollTask();
...
for (;;) {
safeExecute(task);
...
task = pollTask();
if (task == null) {
lastExecutionTime = ScheduledFutureTask.nanoTime();
break;
}
}
afterRunningAllTasks();
this.lastExecutionTime = lastExecutionTime;
return true;
}
protected static void safeExecute(Runnable task) {
try {
task.run();
} catch (Throwable t) {
logger.warn("A task raised an exception. Task: {}", task, t);
}
}
上段代码通过调用父类AbstractEventExecutor的safeExecute()方法,最终调用到了在之前生成的WriteAndFlushTask的run方法,我们来看一下在WriteAndFlushTask中的代码流程:
public final void run() {
try {
// Check for null as it may be set to null if the channel is closed already
if (ESTIMATE_TASK_SIZE_ON_SUBMIT) {
ctx.pipeline.decrementPendingOutboundBytes(size);
}
write(ctx, msg, promise);
} finally {
// Set to null so the GC can collect them directly
ctx = null;
msg = null;
promise = null;
handle.recycle(this);
}
}
protected void write(AbstractChannelHandlerContext ctx, Object msg, ChannelPromise promise) {
ctx.invokeWrite(msg, promise);
}
public void write(AbstractChannelHandlerContext ctx, Object msg, ChannelPromise promise) {
super.write(ctx, msg, promise);
ctx.invokeFlush();
}
上面的代码在WriteAndFlushTask及它的父类中,最终会执行这行代码:ctx.invokeWrite(msg, promise),又调用回了AbstractChannelHandlerContext(hanlder为StringEncoder),我们来分析一下:
private void invokeWrite(Object msg, ChannelPromise promise) {
if (invokeHandler()) {
invokeWrite0(msg, promise);
} else {
System.out.println("not invoke write.");
write(msg, promise);
}
}
private void invokeWrite0(Object msg, ChannelPromise promise) {
try {
((ChannelOutboundHandler) handler()).write(this, msg, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
}
在上面的代码中最终会执行到((ChannelOutboundHandler) handler()).write(this, msg, promise),也就是StringEncoder的write方法:
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
CodecOutputList out = null;
try {
if (acceptOutboundMessage(msg)) {
out = CodecOutputList.newInstance();
@SuppressWarnings("unchecked")
I cast = (I) msg;
try {
encode(ctx, cast, out);
}
}
...
} finally {
if (out != null) {
final int sizeMinusOne = out.size() - 1;
if (sizeMinusOne == 0) {
ctx.write(out.get(0), promise);
}
...
}
}
}
上面的代码主要是对string进行编码,然后再调用ctx的write方法,此刻的ctx为StringEncoder对应的context,我们再来分析一下context的write方法:
public ChannelFuture write(final Object msg, final ChannelPromise promise) {
if (msg == null) {
throw new NullPointerException("msg");
}
try {
if (isNotValidPromise(promise, true)) {
ReferenceCountUtil.release(msg);
// cancelled
return promise;
}
} catch (RuntimeException e) {
ReferenceCountUtil.release(msg);
throw e;
}
write(msg, false, promise);
return promise;
}
private void write(Object msg, boolean flush, ChannelPromise promise) {
AbstractChannelHandlerContext next = findContextOutbound();
final Object m = pipeline.touch(msg, next);
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
if (flush) {
next.invokeWriteAndFlush(m, promise);
} else {
next.invokeWrite(m, promise);
}
} else {
AbstractWriteTask task;
if (flush) {
task = WriteAndFlushTask.newInstance(next, m, promise);
} else {
task = WriteTask.newInstance(next, m, promise);
}
safeExecute(executor, task, promise, m);
}
}
我们又回到了之前分析过的write方法,只不过这次的next的类型为HeadContext,已经是write的最后一个context了,代码最终会执行到next.invokeWrite(m, promise),我们来继续分析:
private void invokeWrite(Object msg, ChannelPromise promise) {
if (invokeHandler()) {
invokeWrite0(msg, promise);
} else {
write(msg, promise);
}
}
private void invokeWrite0(Object msg, ChannelPromise promise) {
try {
((ChannelOutboundHandler) handler()).write(this, msg, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
}
上面的两个方法最终会执行((ChannelOutboundHandler) handler()).write(this, msg, promise),因为现在的context是HeadContext,那么我们来看看HeadContext的Handler()会是什么?
public ChannelHandler handler() {
return this;
}
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
unsafe.write(msg, promise);
}
原来HeadContext的Handler()就是它自己,代码会调用到unsafe的write方法,unsafe的类型为:NioSocketChannelUnsafe,我们再来看看进入到unsafe中的代码:
public final void write(Object msg, ChannelPromise promise) {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
...
outboundBuffer.addMessage(msg, size, promise);
}
上面的代码将msg信息存入到outboundBuffer中,我们之前在研究WriteAndFlushTask的run方法时,最后还有一个flush操作,当将msg信息存入到outbondBuffer后,unsafe中的flush方法会被调用,我们来看一下:
public final void flush() {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
return;
}
outboundBuffer.addFlush();
flush0();
}
protected void flush0() {
if (inFlush0) {
// Avoid re-entrance
return;
}
final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
...
try {
doWrite(outboundBuffer);
} catch (Throwable t) {
...
} finally {
inFlush0 = false;
}
}
上面的方法,最终会调用此unsafe的doWrite方法:
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
SocketChannel ch = javaChannel();
int writeSpinCount = config().getWriteSpinCount();
do {
if (in.isEmpty()) {
// All written so clear OP_WRITE
clearOpWrite();
// Directly return here so incompleteWrite(...) is not called.
return;
}
// Ensure the pending writes are made of ByteBufs only.
int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
int nioBufferCnt = in.nioBufferCount();
// Always us nioBuffers() to workaround data-corruption.
// See https://github.com/netty/netty/issues/2761
switch (nioBufferCnt) {
case 0:
// We have something else beside ByteBuffers to write so fallback to normal writes.
writeSpinCount -= doWrite0(in);
break;
case 1: {
// Only one ByteBuf so use non-gathering write
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
ByteBuffer buffer = nioBuffers[0];
int attemptedBytes = buffer.remaining();
final int localWrittenBytes = ch.write(buffer);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
default: {
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
// We limit the max amount to int above so cast is safe
long attemptedBytes = in.nioBufferSize();
final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
// Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes,
maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
}
} while (writeSpinCount > 0);
incompleteWrite(writeSpinCount < 0);
}
最终代码将由unsafe的doWrite方法来调用jdk的nio相关操作。
write流程小结:
通过分析netty4的源码及流程,我们总结如下:
- netty4中的最终write的线程是channel的worker线程,与read线程为同一个线程;
- 每个channel在它的生命周期内,有且只有一个worker线程为它服务;
- write操作的流程正如我们上面总结的顺序:TelnetClient -> AbstractChannel -> DefaultChannelPipeline -> TailContext(AbstractChannelHandlerContext) -> NioEventLoop (SingleThreadEventExecutor) ->NioEventLoop(run方法) -> AbstractEventExecutor(safeExecute方法) -> WriteAndFlushTask(run方法) -> AbstractChannelHandlerContext(hanlder为StringEncoder) -> StringEncoder(write方法) -> HeadContext(invokeWrite方法) -> NioSocketChannelUnsafe(write);
- 下面的时序图详细的总结了netty4里面的write流程
小结
netty小结
在本文中,我们先后分析了:netty服务启动流程、netty的信息流转通道channelPipeline机制、并详细的分析了netty4的write流程。我们现在给本次分享做一个小结:
- netty极其简化了nio的编程复杂度;
- bossGroup的线程数设置为1是最好,在netty的eventloop架构下,一个channel只能被同一个thread服务;
- 一个channel会有唯一的一个ChannelPipeline,ChannelPipeline的核心是一个双向链表结构。inbound事件从head开始,outbound事件从tail开始,其它的业务context都在head和tail之间,按照顺序处理;
- netty的inbound和outbound事件最终都会在channel的唯一的eventloop架构下按顺序执行;