zoukankan      html  css  js  c++  java
  • LA4080/UVa1416 Warfare And Logistics 最短路树

    题目大意:

    • 求图中两两点对最短距离之和

    • 允许你删除一条边,让你最大化删除这个边之后的图中两两点对最短距离之和。

    暴力:每次枚举删除哪条边,以每个点为源点做一次最短路,复杂度(O(NM^2logN))

    值得注意的是,(Dijkstra)的复杂度(O(NlogN))是关于边而非点的

    这个复杂度对于(n=100,m=1000)的数据难以接受。我们考虑对每个点建出其最短路树。容易想到,只有删除到这个点的最短路树上的边时,才需要再做一次(Dijkstra)。也就是说每个源点只需要做(n)次最短路,复杂度变成(O(N^2MlogN))

    代码实现起来比较麻烦。。本弱调了整整一晚上。

    #include <bits/stdc++.h>
    using namespace std;
    
    #define LL long long
    const int N = 100 + 5;
    const int M = 2000 + 5;
    const int INF = 0x3f3f3f3f;
    
    int n, m, l, kase, ban[M];
    
    struct Graph {
    	
    	int cnt, head[N];
    	
    	struct Edge {int from, nxt, to, id, w;}e[M];
    	
    	void clear () {
    		cnt = -1;
    		for (int i = 1; i <= n; ++i) {
    			head[i] = -1;
    		}
    	}
    	
    	void add_edge (int u, int v, int w) {
    		++cnt; e[cnt] = (Edge) {u, head[u], v, cnt, w}; head[u] = cnt;
    	}
    	
    	struct HeapNode {
    		int u; LL d;
    		bool operator < (HeapNode rhs) const {
    			return d > rhs.d;
    		}
    	};
    	
    	priority_queue <HeapNode> pq;
    	
    	int done[N], _fa[N][N]; LL _dis[N][N]; 
    	//dis[i][j] -> i to j
    	//fa[i][j] -> i as source, j's father
    	
    	void dijkstra (int s) {
    		kase = kase + 1;
    		pq.push ((HeapNode) {s, 0});
    		LL *dis = _dis[s]; int *fa = _fa[s];
    		for (int i = 1; i <= n; ++i) {
    			fa[i] = -1, dis[i] = i == s ? 0 : INF;
    		}
    		while (!pq.empty ()) {
    			HeapNode now = pq.top (); pq.pop ();
    			if (done[now.u] == kase) continue;
    			for (int i = head[now.u]; ~i; i = e[i].nxt) {
    				int v = e[i].to;
    				if (ban[i]) continue;//禁用的边 -> 不用 
    				if (dis[v] > dis[now.u] + e[i].w) {
    					fa[v] = now.u;
    					dis[v] = dis[now.u] + e[i].w;
    					pq.push ((HeapNode) {v, dis[v]});
    				}
    			} 
    			done[now.u] = kase;
    		}
    //		cout << "s = " << s << endl;
    //		for (int i = 1; i <= n; ++i) {
    //			cout << "dis[" << i << "] = " << dis[i] << endl;
    //		}
    	}
    }G;
    
    bool have[N][M]; int minw[N][N];
    
    struct Tree {
    	
    	vector <int> Gr[N];
    	
    	int sz[N]; LL sum[N], dis[N];
    	
    	//sz[u] -> 点u的子树大小
    	//sum[u] -> 点u到其子树里所有点的距离和
    	
    	void prep (int u) {
    		sz[u] = 1; sum[u] = dis[u];
    		for (int i = 0; i < (int)Gr[u].size (); ++i) {
    			int v = Gr[u][i];
    			prep (v);  
    			sz[u] += sz[v];
    			sum[u] += sum[v];
    		}
    	}
    	
    	void build (int s, LL *_dis, int *fa, int cmd) {
    		for (int i = 1; i <= n; ++i) Gr[i].clear ();
    		memcpy (dis, _dis, sizeof (dis));
    		for (int i = 1; i <= n; ++i) {
    			if (fa[i] != -1) {
    				Gr[fa[i]].push_back (i);
    				if (cmd == 1) {
    					have[fa[i]][i] = true;
    					have[i][fa[i]] = true;
    				}
    			}
    		}
    		prep (s);
    //		for (int i = 1; i <= n; ++i) {
    //			cout << "dis[" << i << "] = " << dis[i] << endl;
    //			cout << "sum[" << i << "] = " << sum[i] << endl;
    //		} 
    	} 
    	
    	LL get_ans (int s, LL *_dis, int *fa, int cmd) {
    		build (s, _dis, fa, cmd);
    		return sum[s] + (n - sz[s]) * l;
    	}
    	
    }tr[N];//tr[i] -> 点i的最短路树 
    
    signed main () {
    //	freopen ("data.in", "r", stdin);
    //	freopen ("data.out", "w", stdout);
    	while (cin >> n >> m >> l) {
    		G.clear ();
    		memset (have, 0, sizeof (have));
    		memset (minw, 0x3f, sizeof (minw));
    		for (int i = 1; i <= m; ++i) {
    			static int u, v, w;
    			cin >> u >> v >> w;
    			G.add_edge (u, v, w);
    			G.add_edge (v, u, w);
    			minw[u][v] = min (minw[u][v], w);
    			minw[v][u] = min (minw[v][u], w);
    		}
    		LL ans1 = 0, ans2 = 0;
    		for (int s = 1; s <= n; ++s) {
    			G.dijkstra (s);
    			ans1 += tr[s].get_ans (s, G._dis[s], G._fa[s], 1);
    			//存一下最初的have 
    		}
    		cout << ans1 << " ";
    		for (int i = 0; i <= G.cnt; i += 2) {
    			//每次枚举禁用一条边。
    			LL res_now = 0;
    			ban[i] = ban[i + 1] = true;//双向都要禁 
    			for (int s = 1; s <= n; ++s) { //枚举删除之后每一棵最短路树的状况 
    				int u = G.e[i].from, v = G.e[i].to, w = G.e[i].w;
    				if (have[u][v] && w == minw[u][v]) G.dijkstra (s);
    				res_now += tr[s].get_ans (s, G._dis[s], G._fa[s], 0);
    			}
    			ban[i] = ban[i + 1] = false;
    			ans2 = max (ans2, res_now);
    		}
    		cout << ans2 << endl; 
    	}
    }
    
  • 相关阅读:
    http方法-get和post
    SVG
    canvas
    h5拖放
    jQuery表单事件
    html标签嵌套
    jquery.eq()
    jquery.index()
    Date对象
    json
  • 原文地址:https://www.cnblogs.com/maomao9173/p/10771157.html
Copyright © 2011-2022 走看看