zoukankan      html  css  js  c++  java
  • 0119. Pascal's Triangle II (E)

    Pascal's Triangle II (E)

    题目

    Given a non-negative index k where k ≤ 33, return the (k^{th}) index row of the Pascal's triangle.

    Note that the row index starts from 0.

    img
    In Pascal's triangle, each number is the sum of the two numbers directly above it.

    Example:

    Input: 3
    Output: [1,3,3,1]
    

    Follow up:

    Could you optimize your algorithm to use only O(k) extra space?


    题意

    求出帕斯卡(杨辉)三角形的指定行的元素。

    思路

    可以直接建二维数组进行模拟;也可以压缩至一维数组进行处理;最省空间的是直接根据杨辉三角形的组合数性质直接计算出指定行的所有元素,即 (triangle[i][j]=C^j_i)


    代码实现

    Java

    二维数组

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            int[][] triangle = new int[rowIndex + 1][rowIndex + 1];
            triangle[0][0] = 1;
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = 0; j <= i; j++) {
                    triangle[i][j] = j == 0 || j == i ? 1 : triangle[i - 1][j - 1] + triangle[i - 1][j];
                }
            }
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(triangle[rowIndex][i]);
            }
    
            return ans;
        }
    }
    

    一维数组

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            int[] row = new int[rowIndex + 1];
            row[0] = 1;
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = i; j >= 1; j--) {
                    row[j] = row[j] + row[j - 1];
                }
            }
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(row[i]);
            }
    
            return ans;
        }
    }
    

    一维数组(直接List处理)

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
            ans.add(1);
    
            for (int i = 1; i <= rowIndex; i++) {
                for (int j = i; j >= 1; j--) {
                    if (j == i) {
                        ans.add(1);
                    } else {
                        ans.set(j, ans.get(j) + ans.get(j - 1));
                    }
                }
            }
    
            return ans;
        }
    }
    

    组合数

    class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> ans = new ArrayList<>();
    
            for (int i = 0; i <= rowIndex; i++) {
                ans.add(combination(rowIndex, i));
            }
    
            return ans;
        }
    
        private int combination(int i, int j) {
            if (j > i / 2) {
                return combination(i, i - j);
            }
    
            double ans = 1.0;
            while (j >= 1) {
                ans *= 1.0 * i-- / j--;
            }
    
            return (int) Math.round(ans);
        }
    }
    

    JavaScript

    /**
     * @param {number} rowIndex
     * @return {number[]}
     */
    var getRow = function (rowIndex) {
      let k = 0
      let tri = [1]
      while (k != rowIndex) {
        let pre = 1
        for (let i = 1; i <= k; i++) {
          let cur = tri[i]
          tri[i] = cur + pre
          pre = cur
        }
        tri[++k] = 1
      }
      return tri
    }
    
  • 相关阅读:
    前端CSS部分简单整理
    前端HTML部分简单整理
    Top Android App使用的组件
    使用DialogFragment创建对话框总结
    Rails常用命令
    developer.android.com笔记
    Google Maps API v2 Demo Tutorial
    Android学习的一些问题
    Android学习过程
    Beginning Android 4 Programming Book学习
  • 原文地址:https://www.cnblogs.com/mapoos/p/13494742.html
Copyright © 2011-2022 走看看