Best Time to Buy and Sell Stock III (H)
题目
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
题意
在一个时刻买入股票,在另一个时刻卖出股票,最多可进行2次交易,求能得到的最大收益。
思路
和 0121 很像,只是限定了最多两次交易。可以在0121的基础上进行改进:将数组分成左右两个子数组A(1 -> k)和B(k+1 -> n),分别找到最大收益并相加,改变k找到最大的和就是答案。但这样做有一个问题,即没有考虑A中买入B中卖出的情况。继续改进,我们给A中的最大收益加上一个限制,即必须在第k天卖出,这样第二次交易就能完全落在B中。
代码实现
Java
class Solution {
public int maxProfit(int[] prices) {
if (prices.length == 0) {
return 0;
}
int profit = 0;
int minLeft = prices[0];
int maxRight = prices[prices.length - 1];
int[] pRightMax = new int[prices.length];
// 找到从i开始的右区间能得到的最大收益
for (int i = prices.length - 2; i >= 0; i--) {
pRightMax[i] = Math.max(pRightMax[i + 1], maxRight - prices[i]);
maxRight = Math.max(maxRight, prices[i]);
}
for (int i = 1; i < prices.length; i++) {
// prices[i]-minLeft 为左区间在第i天卖出能得到的最大收益
if (prices[i] - minLeft >= 0) {
profit = Math.max(profit, prices[i] - minLeft + (i == prices.length - 1 ? 0 : pRightMax[i + 1]));
}
minLeft = Math.min(minLeft, prices[i]);
}
return profit;
}
}