zoukankan      html  css  js  c++  java
  • 0902. Numbers At Most N Given Digit Set (H)

    Numbers At Most N Given Digit Set (H)

    题目

    Given an array of digits, you can write numbers using each digits[i] as many times as we want. For example, if digits = ['1','3','5'], we may write numbers such as '13', '551', and '1351315'.

    Return the number of positive integers that can be generated that are less than or equal to a given integer n.

    Example 1:

    Input: digits = ["1","3","5","7"], n = 100
    Output: 20
    Explanation: 
    The 20 numbers that can be written are:
    1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
    

    Example 2:

    Input: digits = ["1","4","9"], n = 1000000000
    Output: 29523
    Explanation: 
    We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
    81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
    2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
    In total, this is 29523 integers that can be written using the digits array.
    

    Example 3:

    Input: digits = ["7"], n = 8
    Output: 1
    

    Constraints:

    • 1 <= digits.length <= 9
    • digits[i].length == 1
    • digits[i] is a digit from '1' to '9'.
    • All the values in digits are unique.
    • 1 <= n <= 109

    题意

    用给定的数字组成一个正整数,使得它比目标值小,统计这样的正整数的个数。

    思路

    记目标值的位数为len,如果组成的正整数k长度小于len,那么可以随意组合;如果长度等于len,那么对第一位进行比较,如果k的第一位小于目标值的第一位,那么剩余位可以随意组合,如果第一位相同,递归求解即可。


    代码实现

    Java

    class Solution {
        public int atMostNGivenDigitSet(String[] digits, int n) {
            Arrays.sort(digits);
            return helper(digits, n, false);
        }
    
        private int helper(String[] digits, int n, boolean fillAll) {
            if (n == 0) {
                return 0;
            }
    
            int count = 0;
            String ns = n + "";
            int len = ns.length();
            int size = digits.length;
    
          	// 仅在第一次调用该方法时需要累加
            if (!fillAll) {
                for (int i = 1; i < len; i++) {
                    count += (int) Math.pow(size, i);
                }
            }
    
            for (int i = 0; i < size; i++) {
                if (digits[i].charAt(0) < ns.charAt(0)) {
                    count += (int) Math.pow(size, len - 1);
                } else if (digits[i].charAt(0) == ns.charAt(0) && len == 1) {
                    count += 1;
                    break;
                } else if (digits[i].charAt(0) == ns.charAt(0) && ns.charAt(1) != '0') {
                    count += helper(digits, Integer.parseInt(ns.substring(1)), true);
                    break;
                }
            }
    
            return count;
        }
    }
    
  • 相关阅读:
    [SCOI2005]骑士精神
    [SCOI2005]超级格雷码
    [SDOI2013]淘金
    [SCOI2014]方伯伯的商场之旅
    P4317 花神的数论题
    RSA算法原理(一)
    PKI 笔记
    字符串解析运用-将字符串分解为多个整数,求各整数之和(华为oj)
    pycharm快捷键、常用设置、配置管理
    启动ipython notebook(jupyter)
  • 原文地址:https://www.cnblogs.com/mapoos/p/14017890.html
Copyright © 2011-2022 走看看