zoukankan      html  css  js  c++  java
  • 【Math for ML】解析几何(Analytic Geometry)

    I. 范数(Norm)

    定义:

    向量空间(V)上的范数(norm)是如下函数:

    [egin{align} |·|:V→R, otag \ x→|x| otag end{align} ]

    该函数会赋予每个向量(x)自身的长度(|x|∈R),并且对于(lambda∈R,\,\,x,y∈V)满足如下性质:

    • Absolutely homogeneous:(|lambda x|=|lambda||x|)
    • Triangle inequality:(|x+y|≤|x|+|y|)
      Positive definite:(|x|≥0)(|x|=0Leftrightarrow x=0)

    (L^p) norm 公式如右: (|x|_p=(sum_i|x_i|^p)^{frac{1}{p}}) for (p∈R,p≥1).

    1) (L^1) Norm

    这个也叫Manhattan norm

    二范式在零点附近增长很慢,而且有的机器学习应用需要在零点和非零点之间进行区分,此时二范式显得力不从心,所以我们可以选择一范式,即(L^1) norm,其表达式为:(|x|_1=sum_i|x_i|).

    2) (L^2) Norm

    这个也叫Euclidean norm

    最常用的是二范式,即(L^2) norm,也称为Euclidean norm(欧几里得范数)。因为在机器学习中常用到求导,二范式求导之后只与输入数据本身有关,所以比较实用。

    3) (L^0) Norm

    0范式表示矢量中非0的元素的个数。其实0范式这个说法是不严谨的,因为它不满足第三个条件,but whatever~

    4) (L^∞) Norm

    无穷大范式,也叫max norm,它表示矢量中所有元素绝对值的最大值,即

    [||x||_∞=max |x_i| ]

    5) F norm

    F norm全称是Frobenius Norm,其表达式如下:

    [||A||_F=sqrt{sum_{i,j}A_{i,j}^2} ]

    II. 内积(Inner Products)

    内积的一个主要目的是用来判断两个向量是否互相正交。另外内积并没有明确的定义,他只是一个广泛的定义,也就是说我们可以根据需要定义内积,例如我们可以把内积定义成点积的形式等等。

    1. 点积(Dot Product)

    一种常见的内积形式是向量空间(R^n)内的点积(Dot Product/ Scalar Product),计算公式如下:

    [x^Ty=sum_{i=1}^nx_iy_i ]

    2. General Inner Products

    在对内积给出一般性的定义之前需要做一些铺垫:

    • 双向映射(Bilinear Mapping)

    维基百科上的定义:A bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments.

    看定义其实不太好懂什么是bilinear mapping,stackexchange上有人给出了简单定义,即可以简单理解为满足如下性质的映射即为双向映射:

    (B(x+y,z) = B(x,z) + B(y,z))(additive in the first "coordinate"),
    (B(x,y+z) = B(x,y) + B(x,z)) (additive in the second "coordinate"),
    (B(cx,y) = cB(x,y) = B(x,cy))preserves scaling in each "coordinate").

    再简单快捷理解的方式就是将(B)理解成实数的乘法,即:
    (B(a,b)=a·b)
    (B(x+y,z) = (x+y)cdot z = xcdot z + ycdot z = B(x,z) + B(y,z))
    (B(x,y+z) = xcdot (y+z) = xcdot y + xcdot z = B(x,y) + B(x,z))
    (B(cx,z) = (cx)cdot z = ccdot(xz) = xcdot(cz) = B(x,cz))

    这样有没有好理解很多?

    • 又一个定义

    假设(V)为向量空间,(Omega:V×V→R)是一个bilinear mapping,它能将两个向量映射到一个实数上。那么

    • (Omega(x,y)=Omega(y,x)),则称(Omega)是对称的。
      (forall x∈V ackslash {0}:Omega(x,x)>0,\,\,\,Omega(0,0)=0),则称(Omega)正定(positive definite)
    • 内积的定义

    假设(V)为向量空间,(Omega:V×V→R)是一个bilinear mapping,它能将两个向量映射到一个实数上。那么

    • 一个正定(positive definite)且对称的bilinear mapping(Omega:V×V→R)被称为在向量空间(V)上的内积(inner product),一般记为(<x,y>),而不是(Omega(x,y))
    • ((V,<·,·>))称为内积空间(inner product space)

    3. 对称正定矩阵(Symmetric,Positive Definite Matrices)

    定义:

    满足如下条件的对称矩阵(A∈R^{n×n})称为对称正定矩阵正定矩阵

    [forall{x∈Vackslash{0}}:x^TAx>0 ]

    若上式中的>换成≥,则该矩阵为对称半正定矩阵。

    例子:

    正定矩阵(A)有如下性质:

    • (A)kernel (null space)只包含(0),因为当(x≠0)时,(x^TAx>0)
    • (A)的对角元素(a_{ii})都是正的,因为(a_{ii}=e_i^TAe_i>0),其中(e_i)表示第(i)个标准基。

    III. 内积的应用

    我们可以通过定义内积从而定义长度(length),距离(distance),角度(angle),正交(orthogonal)等。

    • 长度&距离

    其实长度和距离可以是等价的,定义如下:

    假设有内积空间((V,<·,·>)),那么如下表达式表示(x,y∈V)之间的距离

    [d(x,y)=|x-y|=sqrt{<x-y,x-y>} ]

    如果我们使用点积作为内积,那么上面定义的距离则为欧几里得距离(Euclidean distance),其中映射

    [egin{align} d:V×V→R otag \ (x,y)→d(x,y) otag end{align} $$称为**metric** - **角度&正交** 令$w∈[0,π]$表示两向量之间的角度,则有 ]

    egin{align}
    cos,mathcal{w}&=frac{<x,y>}{sqrt{<x,x><y,y>}} otag
    (dot,,product)&=frac{x^Ty}{sqrt{x^Tx,y^Ty}} otag
    Rightarrow w &= arccosfrac{<x,y>}{sqrt{<x,x><y,y>}} otag
    end{align}

    [由上面的定义可知当$<x,y>=0$时,二者正交。 # **IV. 函数的内积(Inner Product of Functions)** 前面介绍的内积都是基于有限的向量,如果扩展到有无限元素的函数,此时的内积如何定义呢? > 假设有两个函数$u(x),v(x)$,二者的内积为:$<u,v>=int_a^b{u(x)v(x)dx}, \,\, a,b<∞$ 当如上积分为0时,表示两个函数正交。 <b style="color:tomato;"></b> <footer style="color:white;;background-color:rgb(24,24,24);padding:10px;border-radius:10px;"><br> <h3 style="text-align:center;color:tomato;font-size:16px;" id="autoid-2-0-0"><br> <b>MARSGGBO</b><b style="color:white;"><span style="font-size:25px;">♥</span>原创</b><br> <br><br> <br><br> <b style="color:white;"><br> 2018-12-17<p></p> </b><p><b style="color:white;"></b><br> </p></h3><br> </footer>]

  • 相关阅读:
    计算机组成原理小结
    selenium基本操作
    selenium实现网易邮箱的登录注册
    如何安装selenium框架
    2020年目标
    个人对软件测试的认识
    java b2b2c电商系统javashop7.2发布
    基于脚本引擎的运费架构分享
    模拟支付宝微信回调
    Javashop电商系统7.2发布
  • 原文地址:https://www.cnblogs.com/marsggbo/p/10134597.html
Copyright © 2011-2022 走看看