zoukankan      html  css  js  c++  java
  • Woodbury matrix identity

    woodbury matrix identity

    2014/6/20

    【转载请注明出处】http://www.cnblogs.com/mashiqi

    http://en.wikipedia.org/wiki/Woodbury_matrix_identity

    Today I'm going to write down a proof of this Woodbury matrix identity, which is very important in some practical situation. For instance, the 40th equation of this paper" bayesian compressive sensing using Laplace priors" applied this identity. Now let me give the details of it.

    The Woodbury matrix identity is:

    ${(A + UCV)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}$

    where , , and are both assumed reversible.

    Proof:

    We denote with , namely .So:

    [M{A^{ - 1}} = I + UCV{A^{ - 1}}]       

    By multiply U with both side we get:

     

    [egin{array}{l}
    M{A^{ - 1}}U = U + UCV{A^{ - 1}}U = U(I + CV{A^{ - 1}}U)\
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = UC({C^{ - 1}} + V{A^{ - 1}}U)
    end{array}]

    is reversible, we get:

            

    But how could we deal with this nasty term? We should notice that this term, which may not square, is coming from itself, which is right a square and reversible matrix. So, from formula , we make up a pleasant with is nasty :

     

    [egin{array}{l}
    M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A = UCV + A = M\
    Rightarrow M = M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A\
    Rightarrow I - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V = {M^{ - 1}}A
    end{array}]     

    And finally due to the reversibility of , we get the Woodbury matrix identity:

    [{M^{ - 1}} = {(A + VCU)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}]        

    Done.

    We should notice that if and are identity matrix, then Woodbury matrix identity can be reduced to this form:

    [{(A + C)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}]        

    ,which is equivalent to:

    [{(A + C)^{ - 1}} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}]        

    This is because:

     

    [egin{array}{l}
    {(A + C)^{ - 1}} = {A^{ - 1}} - ( - {C^{ - 1}} + {C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - ({C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - {A^{ - 1}}\
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}
    end{array}]

           

  • 相关阅读:
    TAM安装需求和过程
    【转】OpenCV灰色直方图
    【原】Windows编程中的字符集编码格式及_T宏的解释
    【转】拷贝构造函数/深拷贝/浅拷贝
    【转】OpenCV实现KNN算法
    【原】opencv中cvCopy()和cvCloneImage()的区别:
    【转】数据挖掘十大经典算法KNN
    【原】函数返回一个指针以及返回STL对象的问题
    【原】关于c中int a=1; int b=a类型问题的思考
    【转】AfxMessageBox、MessageBox、::MessageBox的区别
  • 原文地址:https://www.cnblogs.com/mashiqi/p/3803667.html
Copyright © 2011-2022 走看看