zoukankan      html  css  js  c++  java
  • tensorflow相关练习

    1.产生随机的数据 y=0.1x +0.3 通过机器学习找到权重W和偏差b

    import tensorflow as tf
    import numpy as np
    
    #creat data
    x_data = np.random.rand(100).astype(np.float32)
    y_data = x_data*0.1 + 0.3
    
    #creat tensorflow structure start
    Weights  = tf.Variable(tf.random_uniform([1],-1.0,1.0))
    biases = tf.Variable(tf.zeros([1]))
    
    y = Weights*x_data + biases
    loss = tf.reduce_mean(tf.square(y-y_data))
    optimizer = tf.train.GradientDescentOptimizer(0.5)  #0.5表示学习效率
    train = optimizer.minimize(loss)
    
    init = tf.initialize_all_variables()
    
    #create tensorflow structure end
    
    sess = tf.Session();
    sess.run(init);   #Very important
    
    for step in range(10001):
        sess.run(train)
        if step % 20 == 0:
            print(step,sess.run(Weights),sess.run(biases));
    
    
            """
             #session的两种打开模式(1)
             sess = tf.Session()
             sess.run(product)
            
            #session的两种打开模式(2)
            with tf.Session() as sess:
                result2 = sess.run(product)
            print (result2)
            """

    2.变量和赋值

    import tensorflow as tf
    
    #定义变量
    state = tf.Variable(0,name='count')
    # print(state.name)
    one = tf.constant(1)
    new_value = tf.add(state , one)
    update = tf.assign(state,new_value)
    init = tf.initialize_all_variables() #must have if define variable
    with tf.Session() as sess:
        sess.run(init)
        for _ in range(8):
            sess.run(update)
            print(sess.run(state))
    #赋值
    input1 = tf.placeholder(tf.float32)
    input2 = tf.placeholder(tf.float32)
    output = tf.multiply(input1,input2)
    with tf.Session() as sess:
        print(sess.run(output,feed_dict={input1:[7.],input2:[2.]}))
  • 相关阅读:
    js 点击复制内容
    tp5 日志的用途以及简单使用
    iOS UIKit:TableView之表格创建(1)
    Linux平台的boost安装全解
    iOS UIKit:CollectionView之布局(2)
    iOS UIKit:CollectionView之设计 (1)
    iOS 网络编程:socket
    Objective-C:内存管理
    iOS UIKit:TabBar Controller
    iOS UIKit:Navigation Controllers
  • 原文地址:https://www.cnblogs.com/mathyk/p/11624631.html
Copyright © 2011-2022 走看看