zoukankan      html  css  js  c++  java
  • 1057. Stack (30)

    /*to solve the problem ,i think we can use stack to maintain the numbers,
    and list to keep it sorted,which is very important to find the Median number.
    */
    #include<stack>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<list>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
        int n;
        stack<int> stak;
        string command;
        int a;
        cin>>n;
        while (n--)
        {
            cin>>command;
            if (command == "Push")
            {
                cin>>a;
                stak.push(a);
            }
            if (command == "Pop")
            {
                if (stak.empty())
                {
                    cout<<"Invalid"<<endl;
                }
                else
                {
                    cout<<stak.top()<<endl;
                    stak.pop();
                }
            }
            if (command == "PeekMedian")
            {
                if (stak.empty())
                {
                    cout<<"Invalid"<<endl;
                    continue;
                }
                vector<int> ls;
                while (!stak.empty())
                {
                    ls.push_back(stak.top());
                    stak.pop();
                }
                //use the unsorted vector to push_back the stack
                for (int i = ls.size()-1; i >=0 ; i—)
                {
                    stak.push(ls[i]);
                }
                sort(ls.begin(),ls.end());
                cout<<ls[ls.size()%2 == 0 ? ls.size()/2-1:(ls.size()+1)/2-1]<<endl;
            }
        }
    }

    At first,i think i could use a temporary stack not only to keep the stack in order but alse to find

    the median one . And it is proofed that it is feasible but not effcient ,as everytime we need

    to sort the stack as long as we want to use the command “PeekMedian”.

    the Time complexity is O(n * log n). then i searched the web. I find someone use the set,

    which is virtually a balanced binary tree.so we could reduced the time complexity down to

    O(log n). Then i rebuild the code according to this suggestion.

    #include <iostream>
    #include <set>
    #include <algorithm>
    #include <stack>
    #include <cstring>
    
    using namespace std;
    
    multiset<int> small, big;
    stack<int> s;
    int mid;
    
    void adjust()
    {
        if (small.size() > big.size() + 1)
        {
            auto it = small.end();
            --it;
            big.insert(*it);
            small.erase(it);
        }
        else if (small.size() < big.size())
        {
            auto it = big.begin();
            small.insert(*it);
            big.erase(it);
        }
        if (s.size() > 0)
        {
            auto it = small.end();
            --it;
            mid = *it;
        }
    }
    
    int main()
    {
        int n;
        char op[15];
        int top, Key;
        scanf("%d", &n);
        while (n--)
        {
            scanf("%s", op);
            if (op[1] == 'o')
            {
                if (s.size() == 0)
                    printf("Invalid
    ");
                else
                {
                    top = s.top();
                    s.pop();
                    printf("%d
    ", top);
                    if (mid >= top)
                    {
                        auto it = small.find(top);
                        small.erase(it);
                    }
                    else
                    {
                        auto it = big.find(top);
                        big.erase(it);
                    }
                    adjust();
                }
            }
            else if (op[1] == 'u')
            {
                scanf("%d", &Key);
                if (s.size() == 0)
                {
                    small.insert(Key);
                    mid = Key;
                }
                else if (Key <= mid)
                    small.insert(Key);
                else
                    big.insert(Key);
                s.push(Key);
                adjust();
            }
            else if (op[1] == 'e')
            {
                if (s.size() == 0)
                    printf("Invalid
    ");
                else
                    printf("%d
    ", mid);
            }
        }
    }
  • 相关阅读:
    08-01集合运算
    07-03成员运算符
    07-02集合
    07-01结构与封装
    06-01字符串格式化.md
    06-03线性结构与切片
    06-02字符串与bytes
    05-02命名元组
    05-01元组
    04-01列表与常用操作
  • 原文地址:https://www.cnblogs.com/maverick-fu/p/3973240.html
Copyright © 2011-2022 走看看