zoukankan      html  css  js  c++  java
  • 1057. Stack (30)

    /*to solve the problem ,i think we can use stack to maintain the numbers,
    and list to keep it sorted,which is very important to find the Median number.
    */
    #include<stack>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<list>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
        int n;
        stack<int> stak;
        string command;
        int a;
        cin>>n;
        while (n--)
        {
            cin>>command;
            if (command == "Push")
            {
                cin>>a;
                stak.push(a);
            }
            if (command == "Pop")
            {
                if (stak.empty())
                {
                    cout<<"Invalid"<<endl;
                }
                else
                {
                    cout<<stak.top()<<endl;
                    stak.pop();
                }
            }
            if (command == "PeekMedian")
            {
                if (stak.empty())
                {
                    cout<<"Invalid"<<endl;
                    continue;
                }
                vector<int> ls;
                while (!stak.empty())
                {
                    ls.push_back(stak.top());
                    stak.pop();
                }
                //use the unsorted vector to push_back the stack
                for (int i = ls.size()-1; i >=0 ; i—)
                {
                    stak.push(ls[i]);
                }
                sort(ls.begin(),ls.end());
                cout<<ls[ls.size()%2 == 0 ? ls.size()/2-1:(ls.size()+1)/2-1]<<endl;
            }
        }
    }

    At first,i think i could use a temporary stack not only to keep the stack in order but alse to find

    the median one . And it is proofed that it is feasible but not effcient ,as everytime we need

    to sort the stack as long as we want to use the command “PeekMedian”.

    the Time complexity is O(n * log n). then i searched the web. I find someone use the set,

    which is virtually a balanced binary tree.so we could reduced the time complexity down to

    O(log n). Then i rebuild the code according to this suggestion.

    #include <iostream>
    #include <set>
    #include <algorithm>
    #include <stack>
    #include <cstring>
    
    using namespace std;
    
    multiset<int> small, big;
    stack<int> s;
    int mid;
    
    void adjust()
    {
        if (small.size() > big.size() + 1)
        {
            auto it = small.end();
            --it;
            big.insert(*it);
            small.erase(it);
        }
        else if (small.size() < big.size())
        {
            auto it = big.begin();
            small.insert(*it);
            big.erase(it);
        }
        if (s.size() > 0)
        {
            auto it = small.end();
            --it;
            mid = *it;
        }
    }
    
    int main()
    {
        int n;
        char op[15];
        int top, Key;
        scanf("%d", &n);
        while (n--)
        {
            scanf("%s", op);
            if (op[1] == 'o')
            {
                if (s.size() == 0)
                    printf("Invalid
    ");
                else
                {
                    top = s.top();
                    s.pop();
                    printf("%d
    ", top);
                    if (mid >= top)
                    {
                        auto it = small.find(top);
                        small.erase(it);
                    }
                    else
                    {
                        auto it = big.find(top);
                        big.erase(it);
                    }
                    adjust();
                }
            }
            else if (op[1] == 'u')
            {
                scanf("%d", &Key);
                if (s.size() == 0)
                {
                    small.insert(Key);
                    mid = Key;
                }
                else if (Key <= mid)
                    small.insert(Key);
                else
                    big.insert(Key);
                s.push(Key);
                adjust();
            }
            else if (op[1] == 'e')
            {
                if (s.size() == 0)
                    printf("Invalid
    ");
                else
                    printf("%d
    ", mid);
            }
        }
    }
  • 相关阅读:
    FZU 1683 纪念SlingShot ★(矩阵 && 求和 && 线性变换)
    POJ 2356 Find a multiple (鸽巢原理)
    HDU 1568 Fibonacci ★(取科学计数法)
    POJ 2356 Find a multiple (鸽巢原理)
    POJ 1222 & 1681 & 1830 & 3185 开关灯问题 (高斯消元 & 异或方程组)
    HDU 1588 Gauss Fibonacci ★(矩阵 && 求和)
    HDU 1568 Fibonacci ★(取科学计数法)
    C#数据绑定技巧
    AHP分析
    AHP分析
  • 原文地址:https://www.cnblogs.com/maverick-fu/p/3973240.html
Copyright © 2011-2022 走看看