zoukankan      html  css  js  c++  java
  • Gym 100285G Cipher Message 3

    题意

    (N,M(N,M le 250000))的两个由8位二进制表示的两个序列,允许改变每个数字的第8位的数值(即0→1,1→0),求改变最少次数使得长为(M)的序列为长为(N)的连续子序列,在次数最少的前提下,找到下标最小的起始位置。

    思路

    • 因为只能改变第8位的状态,所以若能匹配的话,前7位数值需要相同,这步通过KMP完成即可。
    • 剩下就是如何快速求每个匹配区间所需要的代价,即找出两个长为(M)的序列对应位不同的个数。
    • 考虑位置(A[i, i + M - 1]),若按(0.. M-1)对应匹配显然没什么规律,而如果按(M-1..0),则匹配位置的下标和均为(i+M-1),将0和1分开作,用FFT完成计数即可。
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<set>
    #include<vector>
    #include<assert.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define pb push_back
    #define mp make_pair
    #define sz(x) ((int)(x).size())
    #define rep(i,l,r) for(int i=(l);i<(r);++i)
    #define setIO(x) freopen(x".in","r", stdin);freopen(x".out","w",stdout);
    typedef long long ll;
    typedef pair<int, int> pii;
    const ll LINF = 1e10 + 7;
    const int N = 3e5 + 7;
    const int INF = 1e9 + 7;
    const int MOD = 1e9 + 7;
    const double PI = acos(-1.0);
    const double EPS = 1e-8;
    //-----------------head-----------------
    struct C {
    	double r, i;
    	C() {
    		r = i = 0;
    	}
    	C(double _r, double _i) {
    		r = _r, i = _i;
    	}
    	C operator+(const C &p) const {
    		return C(r + p.r, i + p.i);
    	}
    	C operator-(const C &p) const {
    		return C(r - p.r, i - p.i);
    	}
    	C operator*(const C &p) const {
    		return C(r * p.r - i * p.i, r * p.i + i * p.r);
    	}
    } A[N * 2], B[N * 2];
    int n, m, a[N], b[N], p[N], s[2][N];
    void fft(C x[], int n, int rev) {
    	int i, j, k, t;
    	for (i = 1; i < n; ++i) {
    		for (j = 0, k = n >> 1, t = i; k; k >>= 1, t >>= 1)
    			j = j << 1 | (t & 1);
    		if (i < j)
    			swap(x[i], x[j]);
    	}
    	for (int s = 2, ds = 1; s <= n; ds = s, s <<= 1) {
    		C w = C(1, 0), t;
    		C wn = C(cos(2.0 * rev * PI / s), sin(2.0 * rev * PI / s));
    		for (k = 0; k < ds; ++k, w = w * wn)
    			for (i = k; i < n; i += s) {
    				t = w * x[i + ds];
    				x[i + ds] = x[i] - t;
    				x[i] = x[i] + t;
    			}
    	}
    	if (rev == -1)
    		for (i = 0; i < n; ++i)
    			x[i].r /= n;
    }
    int read() {
    	int x = 0;
    	char ch = getchar();
    	while (ch != '0' && ch != '1')
    		ch = getchar();
    	while (ch == '0' || ch == '1') {
    		x = (x << 1) | (ch - '0');
    		ch = getchar();
    	}
    	return x;
    }
    void solve() {
    	int L = 1;
    	while (L < n + m)
    		L <<= 1;
    	rep(w, 0, 2)
    	{
    		rep(i, 0, n)
    			A[i] = C((a[i] & 1) == w, 0);
    		rep(i, n, L)
    			A[i] = C(0, 0);
    		rep(i, 0, m)
    			B[m - i - 1] = C((b[i] & 1) == w, 0);
    		rep(i, m, L)
    			B[i] = C(0, 0);
    		fft(A, L, 1), fft(B, L, 1);
    		rep(i, 0, L)
    			A[i] = A[i] * B[i];
    		fft(A, L, -1);
    		rep(i, 0, n)
    			s[w][i] = A[i].r + EPS;
    	}
    	rep(i, 0, n)
    		a[i] >>= 1;
    	rep(i, 0, m)
    		b[i] >>= 1;
    	p[0] = -1;
    	for (int i = 1, j = -1; i < m; ++i) {
    		while (j >= 0 && b[j + 1] != b[i])
    			j = p[j];
    		j += b[j + 1] == b[i];
    		p[i] = j;
    	}
    	pii ans = mp(INF, INF);
    	for (int i = 0, j = -1; i < n; ++i) {
    		while (j >= 0 && b[j + 1] != a[i])
    			j = p[j];
    		j += b[j + 1] == a[i];
    		if (j == m - 1) {
    			pii tmp = mp(m - s[0][i] - s[1][i], i - m + 2);
    			ans = min(ans, tmp);
    			j = p[j];
    		}
    	}
    	if (ans.first < INF) {
    		puts("Yes");
    		printf("%d %d
    ", ans.first, ans.second);
    	} else {
    		puts("No");
    	}
    }
    int main() {
    	scanf("%d%d", &n, &m);
    	rep(i, 0, n)
    		a[i] = read();
    	rep(i, 0, m)
    		b[i] = read();
    	solve();
    	return 0;
    }
    
  • 相关阅读:
    [Leetcode]@python 76. Minimum Window Substring
    [Leetcode]@python 75. Sort Colors
    HTNL表单
    第二天
    开学心德
    HTML表单
    网页制作
    2nd day
    开课心得
    CF10D/POJ2127 LCIS 题解
  • 原文地址:https://www.cnblogs.com/mcginn/p/5789328.html
Copyright © 2011-2022 走看看