题意
求n!的因子数%1e9+7。
思路
由唯一分解定理,一个数可以拆成素数幂之积,即2^a * 3^b *……,n!=2*3*……*n,所以计算每个素因子在这些数中出现的总次数(直接对2~n素因子分解即可),再用唯一分解定理公式,因子数=(a+1)*(b+1)*……。
代码
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
const int N=200005;
const int mod=1e9+7;
const double eps=1e-8;
const double PI = acos(-1.0);
#define lowbit(x) (x&(-x))
int a[N];
int main()
{
std::ios::sync_with_stdio(false);
ll n;
cin>>n;
for(int i=2;i<=n;i++)
{
int ii=i;
for(int j=2;j<=i;j++)
{
while(ii%j==0)
{
a[j]++;
ii/=j;
}
}
}
ll ans=1;
for(int i=2;i<=n;i++)
{
// cout<<a[i]<<endl;
ans=(ans*(a[i]+1))%mod;
}
cout<<ans<<endl;
return 0;
}