zoukankan      html  css  js  c++  java
  • Flume和sqoop的搭建及简单使用

    flume是实时收集的一种大数据框架

    sqoop是一个数据转换的大数据框架,它可以将关系型数据库,比如mysql,里面的数据导入到hdfs和hive中,当然反过来也可以

    一、Flume的搭建

      1、将/opt/software目录下的flume安装包,解压到/opt/app目录下

      2、进入flume目录下,修改配置文件

        1>将flume-env.sh.tem...文件重命名为flume-env.sh,并进去里面指定JAVA_HOME路径

        2>导入HDFS的有关jar包

        

      3、使用

        1>实时收集数据(监听一个端口,并实时接收该端口的数据)

          a.安装telnet

            将telnet-rpms包上传到/opt/software目录下,然后进入,直接sudo rpm -ivh ./*,安装

          b.创建配置文件,这个文件名随意,比如我命名为a1.conf,内容如下

                 
    # The configuration file needs to define the sources, 
    # the channels and the sinks.
    
    ### define agent
    a1.sources = r1
    a1.channels = c1
    a1.sinks = k1
    
    ### define sources
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = 主机名(hadoop.spark.com)
    a1.sources.r1.port = 端口号(44444)
    
    ### define channels
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    ### define sink
    a1.sinks.k1.type = logger
    a1.sinks.k1.maxBytesToLog = 2014
    
    ### bind the soures and  sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    a1.conf

          c.进入flume目录下,运行       

                 
    bin/flume-ng agent 
    > -c conf 
    > -n a1 
    > -f conf/a1.conf 
    > -Dflume.root.logger=DEBUG,console
    运行代码

          d.telnet连接,telnet  主机名  端口号,注意这里的主机名和端口号要和你的a1.conf中的要一致,然后就可以发送数据了

        2>实时收集某个目录下的日志文件(我以Hive的日志文件为例)

          a.创建配置文件,比如我命名为flume-tail.conf     

            
    # The configuration file needs to define the sources, 
    # the channels and the sinks.
    
    ### define agent
    a2.sources = r2
    a2.channels = c2
    a2.sinks = k2
    
    ### define sources
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -f /opt/app/hive-0.13.1-cdh5.3.6/logs/hive.log
    a2.sources.r2.shell = /bin/bash -c
    
    ### define channels
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    ### define sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://hadoop.spark.com:8020/user/flume/hive-logs/
    
    a2.sinks.k2.hdfs.fileType = DataStream 
    a2.sinks.k2.hdfs.writeFormat = Text
    a2.sinks.k2.hdfs.batchSize = 10
    
    
    ### bind the soures and  sink to the channel
    a2.sources.r2.channels = c2
    a2.sinks.k2.channel = c2
    flume-tail.conf

          b.进入flume目录下,运行    

                
     bin/flume-ng agent 
    > -c conf 
    > -n a2 
    > -f conf/flume-tail.conf 
    > -Dflume.root.logger=DEBUG,console
    运行代码

          c.另开一个窗口,启动hive,看看flume运行那一端有没有数据过来

        3>实时收集某个目录下,指定文件名的数据(我还以Hive为例)

          a.创建配置文件,比如我命名为flume-app.conf   

               
    # The configuration file needs to define the sources, 
    # the channels and the sinks.
    
    ### define agent
    a3.sources = r3
    a3.channels = c3
    a3.sinks = k3
    
    
    ### define sources
    a3.sources.r3.type = spooldir
    a3.sources.r3.spoolDir = /opt/app/flume-1.5.0-cdh5.3.6/spoollogs
    a3.sources.r3.ignorePattern = ^(.)*\.log$
    a3.sources.r3.fileSuffix = .delete
    
    ### define channels
    a3.channels.c3.type = file
    a3.channels.c3.checkpointDir = /opt/app/flume-1.5.0-cdh5.3.6/filechannel/checkpoint
    a3.channels.c3.dataDirs = /opt/app/flume-1.5.0-cdh5.3.6/filechannel/data
    
    ### define sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://hadoop.spark.com:8020/user/flume/splogs/%Y%m%d
    a3.sinks.k3.hdfs.fileType = DataStream 
    a3.sinks.k3.hdfs.writeFormat = Text
    a3.sinks.k3.hdfs.batchSize = 10
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    
    
    ### bind the soures and  sink to the channel
    a3.sources.r3.channels = c3
    a3.sinks.k3.channel = c3
    flume-app.conf

       4.更多使用,请详见官网

         http://flume.apache.org/

    二、sqoop的搭建

      1、将/opt/software目录下的sqoop安装包,解压到/opt/app目录下

      2、将sqoop-env.sh.tem....文件重命名为sqoop-env.sh,并进去里面指定路径

        

      3、拷贝mysql驱动jar包

        将/opt/software/mysql下的驱动jar包拷贝到sqoop的lib目录下

      4、使用

        1>将mysql中test数据库中的my_user表中的数据,导入到hdfs上,在hdfs上默认存储     

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password centos 
    --table my_user 
    --target-dir /user/sqoop/imp_my_user 
    --num-mappers 1
    mysql--hdfs(默认)

        2>将mysql中test数据库中的my_user表中的数据,导入到hdfs上,在hdfs上以parquet存储,除了parquet形式外,还有textfile(默认),orcfile

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --target-dir /user/beifeng/sqoop/imp_my_user_parquet 
    --fields-terminated-by ',' 
    --num-mappers 1 
    --as-parquetfile
    mysql--hdfs(parquet)

        3>将mysql中test数据库中my_user表中指定的列,导入到hdfs上   

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --query 'select id, account from my_user where $CONDITIONS' 
    --target-dir /user/beifeng/sqoop/imp_my_user_query 
    --num-mappers 1
    mysql--hdfs(column)

        4>将mysql中test数据库中my_user表中的数据,导入到hdfs上,压缩存储(以snappy为例)  

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --target-dir /user/sqoop/imp_my_sannpy 
    --delete-target-dir 
    --num-mappers 1 
    --compress 
    --compression-codec org.apache.hadoop.io.compress.SnappyCodec 
    --fields-terminated-by '	'
    mysql--hdfs(snappy)

          这种方式,一般结合下面的代码一起使用     

          
    drop table if exists default.hive_user_snappy ;
    create table default.hive_user_snappy(
    id int,
    username string,
    password string
    )
    ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ;
    
    load data inpath '/user/sqoop/imp_my_sannpy' into table default.hive_user_snappy ;
    View Code

          先将mysql数据库中的数据导入到hdfs上压缩存储,然后将压缩的数据导入到hive表中

        5>增量导入   

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --target-dir /user/sqoop/imp_my_incr 
    --num-mappers 1 
    --incremental append 
    --check-column id 
    --last-value 4
    mysql--hdfs(increase)

        6>直接导入(第二次会覆盖第一次) 

          
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --target-dir /user/beifeng/sqoop/imp_my_incr 
    --num-mappers 1 
    --delete-target-dir 
    --direct
    mysql--hdfs(direct)

        7>将hdfs上的数据,导出到mysql中

          
    touch /opt/datas/user.txt
    vi /opt/datas/user.txt
    12,zhangsan,zhangsan
    13,lisi,lisi
    
    bin/hdfs dfs -mkdir -p /user/sqoop/exp/user/ 
    bin/hdfs dfs -put /opt/datas/user.txt /user/sqoop/exp/user/
    
    
    bin/sqoop export 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --export-dir /user/beifeng/sqoop/exp/user/ 
    --num-mappers 1
    hdfs--mysql

        8>将mysql中的数据导入到hive表中

          
    use default ;
    drop table if exists user_hive ;
    create table user_hive(
    id int,
    account string,
    password string
    )
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '	' ;
    
    bin/sqoop import 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user 
    --fields-terminated-by '	' 
    --delete-target-dir 
    --num-mappers 1 
    --hive-import 
    --hive-database default 
    --hive-table user_hive
    mysql--hive

        9>将hive表中的数据导入到mysql   

          
    CREATE TABLE `my_user2` (
      `id` tinyint(4) NOT NULL AUTO_INCREMENT,
      `account` varchar(255) DEFAULT NULL,
      `passwd` varchar(255) DEFAULT NULL,
      PRIMARY KEY (`id`)
    );
    
    bin/sqoop export 
    --connect jdbc:mysql://hadoop.spark.com:3306/test 
    --username root 
    --password 123456 
    --table my_user2 
    --export-dir /user/hive/warehouse/user_hive 
    --num-mappers 1 
    --input-fields-terminated-by '	'
    hive--mysql

        10>也可以将语句写在一个文件里面

          命令:

          bin/sqoop --options-file /opt/datas/sqoop-import-hdfs.txt 

        11>更多使用请详见官网:

          http://sqoop.apache.org/

  • 相关阅读:
    POJ 3417 Network
    指针动态开空间的板子
    fread()的板子
    luguo P1970 花匠
    Uva
    Uva
    Uva
    Uva
    Uva
    什么才算是真正的编程能力?
  • 原文地址:https://www.cnblogs.com/medal-li/p/7657069.html
Copyright © 2011-2022 走看看