zoukankan      html  css  js  c++  java
  • Codefoces 429 D. Tricky Function


    裸的近期点对....

    D. Tricky Function
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:

    int g(int i, int j) {
        int sum = 0;
        for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
            sum = sum + a[k];
        return sum;
    }
    

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1]a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Sample test(s)
    input
    4
    1 0 0 -1
    
    output
    1
    
    input
    2
    1 -1
    
    output
    2


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long int LL;
    
    const int maxn=100100;
    const LL INF=1LL<<62;
    
    LL a[maxn];
    int n;
    
    struct POINT
    {
        LL x,y;
    }p[maxn],temp[maxn];
    
    bool cmpxy(POINT a,POINT b)
    {
        if(a.x!=b.x) return a.x<b.x;
        return a.y<b.y;
    }
    
    bool cmpy(POINT a,POINT b)
    {
        return a.y<b.y;
    }
    
    inline LL square(LL x)
    {
        return x*x;
    }
    
    LL dist(POINT a,POINT b)
    {
        return square(a.x-b.x)+square(a.y-b.y);
    }
    
    LL Close_pair(int left,int right)
    {
        LL d=INF;
        if(left==right) return INF;
        if(left+1==right) return dist(p[left],p[right]);
        int mid=(left+right)/2;
        d=min(Close_pair(left,mid),Close_pair(mid+1,right));
    
        int k=0;
        for(int i=left;i<=right;i++)
        {
            if(square(p[i].x-p[mid].x)<=d)
            {
                temp[k++]=p[i];
            }
        }
        sort(temp,temp+k,cmpy);
        for(int i=0;i<k;i++)
        {
            for(int j=i+1;j<k&&square(temp[i].y-temp[j].y)<d;j++)
            {
                d=min(d,dist(temp[i],temp[j]));
            }
        }
    
        return d;
    }
    
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",a+i);
            p[i].x=i;
            p[i].y=p[i-1].y+a[i];
        }
        sort(p+1,p+1+n,cmpxy);
        printf("%I64d
    ",Close_pair(1,n));
        return 0;
    }




  • 相关阅读:
    GCD与LCM
    命名空间的使用
    [模板][持续更新]欧拉回路与欧拉路径浅析
    二进制GCD算法解析
    [模板]LCA的倍增求法解析
    [模板]字符串哈希的简易做法
    11、Android--屏幕适配
    10、Android--Shape
    09、Android--Fragment
    08、Android--BroadcastReceiver
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3762126.html
Copyright © 2011-2022 走看看