zoukankan      html  css  js  c++  java
  • Codefoces 429 D. Tricky Function


    裸的近期点对....

    D. Tricky Function
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:

    int g(int i, int j) {
        int sum = 0;
        for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
            sum = sum + a[k];
        return sum;
    }
    

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1]a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Sample test(s)
    input
    4
    1 0 0 -1
    
    output
    1
    
    input
    2
    1 -1
    
    output
    2


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long int LL;
    
    const int maxn=100100;
    const LL INF=1LL<<62;
    
    LL a[maxn];
    int n;
    
    struct POINT
    {
        LL x,y;
    }p[maxn],temp[maxn];
    
    bool cmpxy(POINT a,POINT b)
    {
        if(a.x!=b.x) return a.x<b.x;
        return a.y<b.y;
    }
    
    bool cmpy(POINT a,POINT b)
    {
        return a.y<b.y;
    }
    
    inline LL square(LL x)
    {
        return x*x;
    }
    
    LL dist(POINT a,POINT b)
    {
        return square(a.x-b.x)+square(a.y-b.y);
    }
    
    LL Close_pair(int left,int right)
    {
        LL d=INF;
        if(left==right) return INF;
        if(left+1==right) return dist(p[left],p[right]);
        int mid=(left+right)/2;
        d=min(Close_pair(left,mid),Close_pair(mid+1,right));
    
        int k=0;
        for(int i=left;i<=right;i++)
        {
            if(square(p[i].x-p[mid].x)<=d)
            {
                temp[k++]=p[i];
            }
        }
        sort(temp,temp+k,cmpy);
        for(int i=0;i<k;i++)
        {
            for(int j=i+1;j<k&&square(temp[i].y-temp[j].y)<d;j++)
            {
                d=min(d,dist(temp[i],temp[j]));
            }
        }
    
        return d;
    }
    
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",a+i);
            p[i].x=i;
            p[i].y=p[i-1].y+a[i];
        }
        sort(p+1,p+1+n,cmpxy);
        printf("%I64d
    ",Close_pair(1,n));
        return 0;
    }




  • 相关阅读:
    Jenkins+ansible+Gitlab集成环境搭建
    Jenkins 和常用工具集成
    Jenkins 安装部署及应用
    ansible 及相关应用
    gitlab 快速安装
    [持续交付实践] 交付流水线设计:基于测试脚本的线上拨测监控系统
    gitlab CICD
    Nginx判断UserAgent添加referer
    Nginx判断变量的配置
    golang 入门之环境搭建
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/3762126.html
Copyright © 2011-2022 走看看