zoukankan      html  css  js  c++  java
  • HDU 5289 Assignment(2015 多校第一场二分 + RMQ)

    Assignment

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 627    Accepted Submission(s): 318


    Problem Description
    Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
     

    Input
    In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
     

    Output
    For each test。output the number of groups.
     

    Sample Input
    2 4 2 3 1 2 4 10 5 0 3 4 5 2 1 6 7 8 9
     

    Sample Output
    5 28
    Hint
    First Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
     

    Author
    FZUACM
     

    Source


    解题思路:
    枚举左端点。二分查找右端点,用RMQ维护区间最大值和最小值

    #include <iostream>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <cstdio>
    #include <queue>
    #include <vector>
    #include <stack>
    #define LL long long
    using namespace std;
    const int MAXN = 100000 + 10;
    int A[MAXN];
    int dp1[MAXN][20], dp[MAXN][20];
    int N, M;
    void RMQ_init_Min()
    {
        for(int i=0;i<N;i++) dp1[i][0] = A[i];
        for(int j=1;(1<<j) <= N;j++)
        {
            for(int i=0;i+(1<<j) - 1 < N;i++)
            {
                dp1[i][j] = min(dp1[i][j-1], dp1[i + (1<<(j-1))][j-1]);
            }
        }
    }
    int RMQ_Min(int L, int R)
    {
        int k = 0;
        while(1<<(k+1) <= R - L + 1) k++;
        return min(dp1[L][k], dp1[R-(1<<k)+1][k]);
    }
    void RMQ_init_Max()
    {
        for(int i=0;i<N;i++) dp[i][0] = A[i];
        for(int j=1;(1<<j) <= N;j++)
        {
            for(int i=0;i+(1<<j) - 1 < N;i++)
            {
                dp[i][j] = max(dp[i][j-1], dp[i + (1<<(j-1))][j-1]);
            }
        }
    }
    int RMQ_Max(int L, int R)
    {
        int k = 0;
        while(1<<(k+1) <= R - L + 1) k++;
        return max(dp[L][k], dp[R-(1<<k)+1][k]);
    }
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d%d", &N, &M);
            for(int i=0;i<N;i++) scanf("%d", &A[i]);
            RMQ_init_Min();
            RMQ_init_Max();
            long long ans = 0;
            for(int i=0;i<N;i++)
            {
                int l = i, r = N-1;
                while(l <= r)
                {
                    int mid = (l + r) >> 1;
                    int low = RMQ_Min(i, mid);
                    int high = RMQ_Max(i ,mid);
                    //cout << l << ' ' << r << ' ' << high << ' ' <<low << endl;
                    if(high - low < M) l = mid + 1;
                    else r = mid - 1;
                }
                //cout << l << endl;
                ans += (l - i);
            }
            printf("%I64d
    ", ans);
        }
        return 0;
    }


  • 相关阅读:
    BZOJ2253: [2010 Beijing wc]纸箱堆叠
    解题:CF1055F Tree and XOR
    解题:JSOI 2011 柠檬
    解题:NOI 2009 诗人小G
    2019.2.28&2019.3.1 考试
    省选前作业题汇总2
    解题:LNOI 2014 LCA
    省选前作业题汇总1
    2019.2.26 考试
    解题:SDOI 2014 重建
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5330168.html
Copyright © 2011-2022 走看看