刘汝佳书上都给出了完整的代码
在这里理一下思路:
由题意知肯定存在一个或者多个双连通分量;
假设某一个双连通分量有割顶。那太平井一定不能打在割顶上。
而是选择割顶之外的随意一个点;
假设没有割顶,则要在该双连通分量上打两个井
至于打井方案。见代码
#include <cstdio> #include <cstring> #include <vector> #include <stack> #include <map> using namespace std; const int N = 50005; struct Edge { int u, v; Edge() {} Edge(int u, int v) { this->u = u; this->v = v; } }; int pre[N], bccno[N], dfs_clock, bcc_cnt; bool iscut[N]; vector<int> g[N], bcc[N]; stack<Edge> S; int dfs_bcc(int u, int fa) { int lowu = pre[u] = ++dfs_clock; int child = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; Edge e = Edge(u, v); if (!pre[v]) { S.push(e); child++; int lowv = dfs_bcc(v, u); lowu = min(lowu, lowv); if (lowv >= pre[u]) { iscut[u] = true; bcc_cnt++; bcc[bcc_cnt].clear(); //start from 1 while(1) { Edge x = S.top(); S.pop(); if (bccno[x.u] != bcc_cnt) {bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt;} if (bccno[x.v] != bcc_cnt) {bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt;} if (x.u == u && x.v == v) break; } } } else if (pre[v] < pre[u] && v != fa) { S.push(e); lowu = min(lowu, pre[v]); } } if (fa < 0 && child == 1) iscut[u] = false; return lowu; } int st; void find_bcc() { memset(pre, 0, sizeof(pre)); memset(iscut, 0, sizeof(iscut)); memset(bccno, 0, sizeof(bccno)); dfs_clock = bcc_cnt = 0; dfs_bcc(0, -1); } int n, m; typedef long long ll; void solve() { ll ans1 = 0, ans2 = 1; for (int i = 1; i <= bcc_cnt; i++) { int cut_cnt = 0; for (int j = 0; j < bcc[i].size(); j++) if (iscut[bcc[i][j]]) cut_cnt++; if (cut_cnt == 1) { ans1++; ans2 *= (ll)(bcc[i].size() - cut_cnt); } } if (bcc_cnt == 1) { ans1 = 2; ans2 = (ll)bcc[1].size() * (bcc[1].size() - 1) / 2; } printf(" %lld %lld ", ans1, ans2); } int main() { int cas = 0; while (~scanf("%d", &m) && m) { int u, v, Max = 0; while (m--) { scanf("%d%d", &u, &v); u--; v--; g[u].push_back(v); g[v].push_back(u); Max = max(Max, u); Max = max(Max, v); } find_bcc(); printf("Case %d:", ++cas); solve(); for (int i = 0; i <= Max; i++) g[i].clear(); } return 0; }