zoukankan      html  css  js  c++  java
  • Python之数据结构基础

    一、数据结构基础

        a、什么是数据结构

            

          b、数据结构的分类

           

           c、列表 

            

    import random
    from timewrap import *
    
    def list_to_buckets(li, iteration):
        """
        :param li: 列表
        :param iteration: 装桶是第几次迭代
        :return:
        """
        buckets = [[] for _ in range(10)]
        for num in li:
            digit = (num // (10 ** iteration)) % 10
            buckets[digit].append(num)
        return buckets
    
    def buckets_to_list(buckets):
        return [num for bucket in buckets for num in bucket]
        # li = []
        # for bucket in buckets:
        #     for num in bucket:
        #         li.append(num)
    
    @cal_time
    def radix_sort(li):
        maxval = max(li) # 10000
        it = 0
        while 10 ** it <= maxval:
            li = buckets_to_list(list_to_buckets(li, it))
            it += 1
        return li
    
    li = [random.randint(0,1000) for _ in range(100000)]
    radix_sort(li)
    列表

          d、栈

                    

    二、栈的Python实现

      a、栈的应用——括号匹配为题

        

    def brace_match(s):
        stack = []
        match = {')':'(', ']':'[', '}':'{'}
        match2 = {'(':')', '[':']', '{':'}'}
        for ch in s:
            if ch in {'(', '[', '{'}:
                stack.append(ch)
            elif len(stack) == 0:
                print("缺少%s" % match[ch])
                return False
            elif stack[-1] == match[ch]:
                stack.pop()
            else:
                print("括号不匹配")
                return False
        if len(stack) > 0:
            print("缺少%s" % (match2[stack[-1]]))
            return False
        return True
    
    
    brace_match("[{()[]}{}{}")
    括号匹配实现

        b、队列

           

            

       c、队列的实现

        

       d、队列的实现原理——环形队列

      e、队列的实现原理——环形队列

        

       f、队列的内置模块

      

    三、栈的应用——迷宫为题

         

         

    解决思路

    from collections import deque
    
    maze = [
        [1,1,1,1,1,1,1,1,1,1],
        [1,0,0,1,0,0,0,1,0,1],
        [1,0,0,1,0,0,0,1,0,1],
        [1,0,0,0,0,1,1,0,0,1],
        [1,0,1,1,1,0,0,0,0,1],
        [1,0,0,0,1,0,0,0,0,1],
        [1,0,1,0,0,0,1,0,0,1],
        [1,0,1,1,1,0,1,1,0,1],
        [1,1,0,0,0,0,0,0,0,1],
        [1,1,1,1,1,1,1,1,1,1]
    ]
    
    dirs = [
        lambda x,y:(x-1,y),  #
        lambda x,y:(x,y+1),  #
        lambda x,y:(x+1,y),  #
        lambda x,y:(x,y-1),  #
    ]
    
    
    def solve_maze(x1, y1, x2, y2):
        stack = []
        stack.append((x1,y1))
        maze[x1][y1] = 2
        while len(stack) > 0:   # 当栈不空循环
            cur_node = stack[-1]
            if cur_node == (x2,y2): #到达终点
                for p in stack:
                    print(p)
                return True
            for dir in dirs:
                next_node = dir(*cur_node)
                if maze[next_node[0]][next_node[1]] == 0:   #找到一个能走的方向
                    stack.append(next_node)
                    maze[next_node[0]][next_node[1]] = 2  # 2表示已经走过的点
                    break
            else: #如果一个方向也找不到
                stack.pop()
        else:
            print("无路可走")
            return False
    
    
    
    
    
    
    def solve_maze2(x1,y1,x2,y2):
        queue = deque()
        path = []    # 记录出队之后的节点
        queue.append((x1,y1,-1))
        maze[x1][y1] = 2
        while len(queue) > 0:
            cur_node = queue.popleft()
            path.append(cur_node)
            if cur_node[0] == x2 and cur_node[1] == y2:  #到终点
                real_path = []
                x,y,i = path[-1]
                real_path.append((x,y))
                while i >= 0:
                    node = path[i]
                    real_path.append(node[0:2])
                    i = node[2]
                real_path.reverse()
                for p in real_path:
                    print(p)
                return True
            for dir in dirs:
                next_node = dir(cur_node[0], cur_node[1])
                if maze[next_node[0]][next_node[1]] == 0:
                    queue.append((next_node[0], next_node[1], len(path)-1))
                    maze[next_node[0]][next_node[1]] = 2 # 标记为已经走过
        else:
            print("无路可走")
            return False
    
    
    
    
    solve_maze2(1,1,8,8)
    迷宫问题

       a、队列的应用

    def solve_maze2(x1,y1,x2,y2):
        queue = deque()
        path = []    # 记录出队之后的节点
        queue.append((x1,y1,-1))
        maze[x1][y1] = 2
        while len(queue) > 0:
            cur_node = queue.popleft()
            path.append(cur_node)
            if cur_node[0] == x2 and cur_node[1] == y2:  #到终点
                real_path = []
                x,y,i = path[-1]
                real_path.append((x,y))
                while i >= 0:
                    node = path[i]
                    real_path.append(node[0:2])
                    i = node[2]
                real_path.reverse()
                for p in real_path:
                    print(p)
                return True
            for dir in dirs:
                next_node = dir(cur_node[0], cur_node[1])
                if maze[next_node[0]][next_node[1]] == 0:
                    queue.append((next_node[0], next_node[1], len(path)-1))
                    maze[next_node[0]][next_node[1]] = 2 # 标记为已经走过
        else:
            print("无路可走")
            return False
    
    
    
    
    solve_maze2(1,1,8,8)
    迷宫问题——队列实现

    四、链表

    import random
    from timewrap import *
    
    def list_to_buckets(li, iteration):
        """
        :param li: 列表
        :param iteration: 装桶是第几次迭代
        :return:
        """
        buckets = [[] for _ in range(10)]
        for num in li:
            digit = (num // (10 ** iteration)) % 10
            buckets[digit].append(num)
        return buckets
    
    def buckets_to_list(buckets):
        return [num for bucket in buckets for num in bucket]
        # li = []
        # for bucket in buckets:
        #     for num in bucket:
        #         li.append(num)
    
    @cal_time
    def radix_sort(li):
        maxval = max(li) # 10000
        it = 0
        while 10 ** it <= maxval:
            li = buckets_to_list(list_to_buckets(li, it))
            it += 1
        return li
    
    li = [random.randint(0,1000) for _ in range(100000)]
    radix_sort(li)
    列表

    def insert_sort(li):
        for i in range(1, len(li)):
            # i 表示无序区第一个数
            tmp = li[i] # 摸到的牌
            j = i - 1 # j 指向有序区最后位置
            while li[j] > tmp and j >= 0:
                #循环终止条件: 1. li[j] <= tmp; 2. j == -1
                li[j+1] = li[j]
                j -= 1
            li[j+1] = tmp
    
    def shell_sort(li):
        d = len(li) // 2
        while d > 0:
            for i in range(d, len(li)):
                tmp = li[i]
                j = i - d
                while li[j] > tmp and j >= 0:
                    li[j+d] = li[j]
                    j -= d
                li[j+d] = tmp
            d = d >> 1
    练习i——插入
    from timewrap import *
    
    @cal_time
    def binary_search(li, val):
        low = 0
        high = len(li) - 1
        while low <= high:
            mid = (low + high) // 2
            if li[mid] > val:
                high = mid - 1
            elif li[mid] < val:
                low = mid + 1
            else:
                return mid
        else:
            return -1
    
    def find_a(nums, target):
        low = 0
        high = len(nums) - 1
        while low <= high:
            mid = (low + high) // 2
            if target <= nums[mid]:
                high = mid - 1
            else:
                low = mid + 1
        #[1, 2, 2, 2, 4, 8, 10]
    
        if low < len(nums):
            return low
        else:
            return -1
    
    
    
    def find_b(nums, target):
        low = 0
        high = len(nums) - 1
        while low <= high:
            mid = (low + high) // 2
            if target < nums[mid]:
                high = mid - 1
            else:
                low = mid + 1
        if low < len(nums):
            return low
        else:
            return -1
    
    @cal_time
    def linear_search(li, val):
        try:
            return li.index(val)
        except ValueError:
            return -1
    
    li = [1,2,2,2,4,8,10]
    print(find_a(li, 10))
    View Code
    def insert_sort(li):
        for i in range(1, len(li)):
            # i 表示无序区第一个数
            tmp = li[i] # 摸到的牌
            j = i - 1 # j 指向有序区最后位置
            while li[j] > tmp and j >= 0:
                #循环终止条件: 1. li[j] <= tmp; 2. j == -1
                li[j+1] = li[j]
                j -= 1
            li[j+1] = tmp
    
    def shell_sort(li):
        d = len(li) // 2
        while d > 0:
            for i in range(d, len(li)):
                tmp = li[i]
                j = i - d
                while li[j] > tmp and j >= 0:
                    li[j+d] = li[j]
                    j -= d
                li[j+d] = tmp
            d = d >> 1
    View Code
  • 相关阅读:
    清除浮动
    svg自己记得文档
    CSS3最颠覆性的动画效果,基本属性[过渡和2D]
    下载svg图片转化为字体使用!!!!!!
    CSS3 Transform的perspective属性【转载,自己学习使用】
    CSS炫酷样式,不断编辑更新...
    VC++ GDI+编程的字体和文本绘制
    图像处理常用算法
    详细解说STL hash_map系列
    微软公司软件开发模式简介 收藏
  • 原文地址:https://www.cnblogs.com/mengqingjian/p/8406943.html
Copyright © 2011-2022 走看看