zoukankan      html  css  js  c++  java
  • Python pycharm(windows版本)部署spark环境

    参考博文:
    https://www.cnblogs.com/nucdy/p/6776187.html

    一、 部署本地spark环境

    1.下载并安装好jdk1.8,配置完环境变量。

    2.Spark环境变量配置

    • 下载:http://spark.apache.org/downloads.html

        我下载的是spark-2.3.0-bin-hadoop2.7.tgz,spark版本是2.3,对应的hadoop版本是2.7.

    • 解压
    • 配置系统环境变量:

        将F:spark-2.3.0-bin-hadoop2.7in添加到系统Path变量,同时新建SPARK_HOME变量,变量值为:F:spark-2.3.0-bin-hadoop2.7

    3.Hadoop相关包的安装(参考:https://www.cnblogs.com/wuxun1997/p/6847950.html ;https://blog.csdn.net/kaluoye/article/details/77984882

     spark是基于hadoop之上的,运行过程中会调用相关hadoop库,如果没配置相关hadoop运行环境,会提示相关出错信息,虽然也不影响运行。

        我下载的是hadoop-2.7.6.tar.gz.

    • 解压
    • 配置系统环境变量:

        将相关库添加到系统Path变量中:F:hadoop-2.7.6in;同时新建HADOOP_HOME变量,变量值为:F:hadoop-2.7.6。

        下载window下适应的包,包含了hadoop.dll和winutils。资源:http://pan.baidu.com/s/1jHVuaxg,下载解压后全部拷贝到hadoop解压后对应的bin文件夹。

    • 配置hadoop的四个XML文件,我的路径为F:hadoop-2.7.6etc目录下

    core-site.xml

    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://localhost:9000</value>
        </property>    
    </configuration>
    

    hdfs-site.xml

    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>1</value>
        </property>
        <property>    
            <name>dfs.namenode.name.dir</name>    
            <value>file:/hadoop/data/dfs/namenode</value>    
        </property>    
        <property>    
            <name>dfs.datanode.data.dir</name>    
            <value>file:/hadoop/data/dfs/datanode</value>  
        </property>
    </configuration>
    

    mapred-site.xml

    <configuration>
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property>
    </configuration>
    

    yarn-site.xml

    <configuration>
        <property>
            <name>yarn.nodemanager.aux-services</name>
            <value>mapreduce_shuffle</value>
        </property>
        <property>
            <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
            <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
    </configuration>
    
    • 启动windows命令行窗口,进入hadoop-2.7.6in目录,执行下面2条命令,先格式化namenode再启动hadoop
    F:hadoop-2.7.6in>hadoop namenode -format

      此步会报错:Hadoop Error: JAVA_HOME is incorrectly set.

      原因:由于我的jdk安装在c盘的programe files 目录下,JAVA_HOME 的值有空格,启动不了,可以把JAVA_HOME 改成C:progra~1XXX

      (参考:https://blog.csdn.net/wen3011/article/details/54907731)

    • 进入hadoop的sbin目录,运行start-all.cmd
    F:hadoop-2.7.6sbin>start-all.cmd
    

      

    F:hadoop-2.7.6sbin>jps
    4944 DataNode
    5860 NodeManager
    3532 Jps
    7852 NameNode
    7932 ResourceManager
    

      通过jps命令可以看到4个进程都拉起来了,到这里hadoop的安装启动已经完事了。

      接着我们可以用浏览器到localhost:8088看mapreduce任务,到localhost:50070->Utilites->Browse the file system看hdfs文件。

      如果重启hadoop无需再格式化namenode,只要stop-all.cmd再start-all.cmd就可以了。

      上面拉起4个进程时会弹出4个窗口:DataNode;NameNode;NodeManager;ResourceManager,可以查看详细。

    二、Python环境

      Spark提供了2个交互式shell, 一个是pyspark(基于python), 一个是spark_shell(基于Scala). 这两个环境其实是并列的, 并没有相互依赖关系, 所以如果仅仅是使用pyspark交互环境, 而不使用spark-shell的话, 甚至连scala都不需要安装.

    • 启动pyspark验证

        在windows下命令行中启动pyspark,如图:

    三、在pycharm中配置开发环境   

    1.配置Pycharm

    打开PyCharm,创建一个Project。然后选择“Run” ->“Edit Configurations”

     选择 “Environment variables” 增加SPARK_HOME目录与PYTHONPATH目录。

    • SPARK_HOME:Spark安装目录

    • PYTHONPATH:Spark安装目录下的Python目录

    2.测试程序

    # -*- coding: utf-8 -*-
    __author__ = 'kaylee'
    
    import os
    import sys
    
    os.environ['SPARK_HOME']="F:spark-2.3.0-bin-hadoop2.76"
    sys.path.append("F:spark-2.3.0-bin-hadoop2.7python")
    
    try:
        from pyspark import SparkContext
        from pyspark import SparkConf
        print('Successfully imported Spark Modules')
    except ImportError as e:
        print('Can not import Spark Modules', e)
    sys.exit(1)
    

    如果程序可以正常输出: "Successfully imported Spark Modules"就说明环境已经可以正常执行。

    注意,有一步很容易漏:

    Settings->Project Structure->Add Content Root->F:spark-2.3.0-bin-hadoop2.7pythonlibpy4j-0.10.6-src.zip

    注意:

    可能会报没有 py4j ( 它是python用来连接java的中间件)

    可以用命令安装:pip install py4j

  • 相关阅读:
    使用pull解析XML文件
    使用Pull解析器生成XML文件
    Android下文件访问的权限
    Android之SharedPreference存储数据
    Android之外部存储(SD卡)
    Android的内部存储
    Android数据存储的方式
    点击事件的四种写法
    Context
    EclipseADT编写单元测试代码的步骤
  • 原文地址:https://www.cnblogs.com/metianzing/p/9052272.html
Copyright © 2011-2022 走看看